Chapter5t
&ariseoftheirownagproblemsareimportantaeigated。HereIwilldescribethebis,andthealan,FibonadStirliheyeainnaturals。Butwefirstbeginwithsomeveryfualnumbersequences。
Triangularhmetietricprogressions
&heyearwhebis,Iwilltakeamomehetriangularhofwhiotedbythesumofthefirstnumbers。Itsvalue,intermsofn,befoundbythefollowingtrick。Wewritetmehenagainasthesamesumbutinthereversethetwoversionsofther:
tn=1+2+3+···+(n-2)+(n-1)+n
tn=n+(n-1)+(n-2)+···+3+2+1;
Forexample,bytakinga=1athesumofthefirstnoddnumbersisn+n(n-1)=n+n2-hsquare。
Ifwereplaultipliastheoperation,wemovefromarithmeticseriestogeometricseries。Inaicseries,eachpairofsuccessivetermsisseparatedbyaohenumberbinournotation。Inotherwords,tomovefromohe,wesimplyaddb。Iricseries,weonbeginwithsomearbitraryhefirsttermandmovefromohebymultiplyingbyafixednumber,calledtheonratio,dehesymbolr。Thatistosay,thetypietricserieshastheforma,ar,ar2,···withthenthtermbeingarn-1。Aswitharithmeticseries,thereisaformulaforthesumofthefirstntermsofageometricseries:
Thequickwayofseeingthatthisformulaisrightistotaketheequivalentformthatweobtaiiplybothsidesofthisequationby(r-1)andmultiplyoutthebratheleft-haain:
(ar+ar2+ar3+···+arn)-(a+ar+ar2+···+arn-1)
andthewholeexpressionteleseaningthatermiscelledbyoherbracket:theoionsarearn-a=a(rn-1),showingthatourformulaforthesumiscorreple,puttinga=1ahesumofpowersof2:
1+2+4+···+2n-1=2n-1。
ThisformulaisjustwhatyouneedioverifyEuclid’sresultfromChapter3onhowtogenumbersfromMersenneprimes。
Factorials,permutations,andbis
Aswehaveseeriangularnumberarisesfromsummingallthenumbersfrom1uptoher。Ifwereplaultiplithisidea,wegetwhatareknoworialnumbers,whichmadetheirfirstappearaer2。
Faeuptlyingandprobabilityproblemssuchasthecesofbeiatypeofhandinacardgamelikepoker。Forthatreasoheirownnotatioorialisdenotedbyn!=n×(n-1)×···×2×1。Thetriangularnumbersgrowreasonablyquickly,atabouthalftherateofthesquares,butthefactrowmuchfasterandsoonpassintothemillionsandmillions:forexample10!=3,628,800。Theexarkalertsustothisratheralarmih。
&specialclassthatemergesingproblems,oreionsastheyarecalled,isthatofthebis,soheyariseasthemultipliersofpowersofxwhenthebinomialexpression(1+x)nisexpahebi,r)isthenumberofdifferentwayswemaystructasetofsizerfromoneofsizen。Forexample,C(4,2)=6,astherearesixpairs(takenwithardtoorderair)thatagroupoffour:forexample,ifwehavefour,Alex,Barbara,e,andDavid,therearesixwaysthatweselethisgroup:AB,AC,AD,Bdomialtsbecaltwodistinctways。First,wedtheargumeweusedtocalculatege,r)r!,whisgivesustheusefulexpression:
Thisfactorial-basedformulaforgbisdoesgiveanicealgebraithebisthatallowsustodemoheirmanyspecialproperties。However,theevolutioiesisofteraifwefoasedwaytogeegers,whichisbymeaigle(seeFigure2),alsoknoascal’sTriangle,inhonourofthe17th-turyFreidphilosopherBlaisePascal(1623–62)。(TheArithmetiglehasbeendisdre-dischoutPersia,India,andaoverthelast1,000years:forexample,itfeaturedasthefrohePreirrorbyChuShih-1303。)
2。TheArithmetigle
Eaumberinthebodyleisthesumofthetwoaboveit。Thetriangle,whibeuediely,givesthefulllistofbis。Forexample,tofindthenumberofwaysofselegfiveperoupofseven,proceedasfollows。heliriangle,beginning。Similarlyionswithinealefttainstartingwith0。Godowntothelinenumbered7,ahelinenumbered5(rememberingtostartyour0):weseetheansweris21。Youwillryofeaple,21isalsothenumberofwaysofgtwoperoupofseven。Thisisexplainedbythatwhehefivefromseveaneouslygtwofromsevewobeingthepairleftbehind。Thissymmetryargumentofcourseappliestoeveryrow。Thisisalsomaheformulaonpage55,foritreturnsthesameexpressionifwerepla-r,asthetermsrandn-rthatweseeiorsimplysositions。
&hatthepatterherightahardtosee。Eachrowbuildsfromtheo。Weseeeasilythatthefirstthreerowsareple,the2ihethirdrowtellsusthattherearetwowaysofgasinglepersonfromapair。The1thatsitsontopissayingthatthereisoochooseasetofsizezerofromtheemptyset。Infact,thereisonewayofgasetofsizezerofroma,whichiswhyeveryrowbeginswith1。Letusfotheexamplejustgiven–thereare21=15+6waysofselegfivefromagroupofsevehe21quiurallysplitintotwotypes。First,thereare15waystroupoffourfromthefirstsixpeople,towhichwemayaddtheseveoformourfivesome。Ifwedon’tihpersoheobuildasetoffivefromthefirstsix,andtherearesixwaysofdoingthis。Thisillustrateshowoheryisthesumofthetwoaboveit,andthispatternpropagatesthroughle。Insymbolsthisruletakestheform:
-1,r)+-1,r-1)。
&riangleisripatterns。Forexample,summingallthenumbersineachsuccessiverowgivesthedoublingsequence1,2,4,8,16,32,···:thesequenceofpowersof2。Insummibegins1,8,28,56,···forinstance,wearesummingthenumberofwaysofgasetofsize0,1,2,3etasetof8。Intotal,thisgivesusthenumberofwaysofselegasetofanysizefromagroupof8,whichisequalto28as,ingeneral,asetofsizens2hinit。
Thislastfabeseely,forasubsetofasetofsizeifiedbyabinarystrihninthefolloesiderthesetiioninaspecificorder{a1,a2,···,an}say,andthenabinarystrihnspecifiesasubsetbysayianthestringihepresehedingaiiiion。Forexample,ifrings0111and0000staivelyfor{a2,a3,a4},
ayset。Siwochoicesforeatryinthebinarystring,thereare2nsugsinallandtherefore2hiofsizen。
umbers
&hesimplestvisualrepresentationsthatgivesrisetothisypeisasthenumberofwayswedraw‘mountains’usingnupstrokesandndownstrokes(seeFigure3)
3。Withthreeupanddowherearefivemountainpatterns
&ainpatternhasaion,however,asameaningfulbradsothenumberofmeaningfulwaysaofnpairsofparehenthumber。Forexample,(())()and((()))aremeaningfulbragsbut())(()isnot:tobemeaningful,thebracketsmustneverfallbehindthenumberhtbracketsaswelefttht。Thisdstothenaturalthatourmountainsmustneverdiveunderground。ForihefirstandlastmountainpatternsinFigure3dt()(())aively。
&alannumberalsotsthenumberofwaysthatwebreakuparegularpolygonwithrianglesbymeansofdiagonalsthatdonoteahereareotheriionsalongtheselihbis,therearefumberstosmallerumbers,whichmakesthemameomanipulation。
Fibonaumbers
TheFibonaeseriesofengeionamongthegeneralpublic。Thesequensasfollows
1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,···
whereeaumberafterthepairofinitial1sisthesumofthetwothatebefore。Inthis,thereisasimilaritywiththebisiermisthesumoftwopreviousohesequehemethodofformationoftheFibonaumbersissimpler:
fn=fn-1+festhenthFibonaumberandwefixf1=f2=1。Wecallsuulathatdefineseachmemberofasequespredecessorsareorarecerelation。
Howdoesthissequewasfirstintrodu1202byLeonardoofPisa,betterknownasFibonatheformofhiscelebratedRabbitProblem。Afemalerabbitisborwomourityaergivesbirthtoadaughtereath。ThenumberoffemalerabbitswehaveatthebegihistheheFibonaumbers,forthereis1rabbitatthebeginnimonth,aatthestartofthethirdmonthshegivesbirthtoadaughtersowethes。hshehasan3ahafterthatwehave5buhmotheradaughterareehebegihthereafter,thenumberhtersequalsthenumberoffemaleswehadtwomonthsago,asonlytheyareoldenoughtobreed。Itfollowsthatthenumberoffemaleswehaveatthestartofeachsubsequehetotalofthepreviousmonth(Fibonacci’srabbitsareimmortal)plusthehemohereforetheruleofformationoftheFibonaumbersexactlymatchesthebreedingpatternofhisrabbits。