Chapter1Hownottothinkaboutnumbers
Weareallusedtoseeiendown,andtsomemeaningfromthem。However,anumeralsudtherepreseohing。InRomannumerals,forexample,ritethenumbersixasVI,butwerealizethatthisstandsforthesameiswrittenas6iion。Bothsymbolizesofthekiosixtallymarks:IIIIII。Weshallfirstspendalittletimegthedifferentresentandthinkaboutnumbers。
&imessolvenumberproblemsalmostwithit。Forexample,supposeyouaregameetingandyouwahateveryoherehasacopyoftheagenda。Youdealwiththisbylabellingeachcopyofthehandoutinturialsofeachofthosepresent。Aslongasyoudonotrunoutofcopiesbeforepletingthisprocess,youwillknowthatyouhaveasuffiumbertogoaround。Youhavethehisproblemwithtoarithmetidwithoutexpliting。Thereareworkforushereallthesameandtheyallowpreparisoionwithahoughthemembersthatmakeupthescouldhaveentirelydifferentcharacters,asisthecasehere,whereoisaofpeople,whiletheothersistsofpiecesofpaper。
Whatnumbersallowustodoistoparetherelativesizeofohanother。
Intheprevioussarioyouhertoanypeoplewerepresentasyoudidoknow–yourproblemwastodetermithenumberofcopiesoftheagendawasatleastasgreatasthenumberofpeople,andthevalueofthesenumberswasnotrequired。Youwill,however,akeaberpresentwhenyouorderlunchforfifteeaiestotottingupthebillforthatmeal,someonewillmakeuseofarithmetictoworkouttheexactifthesumsarealldoneonacalculator。
Ourmoderemallowsustoexpressnumbersianduniformmanner,whichmakesiteasytoberwithaoperformthearithmeticaloperationsthatarisethroughg。Io-dayworld,weemploybasetenforallourarithmetic,thatistosaywetbytefortheatalreasoendigitsonourhands。Whatmakesouremsoeffective,however,isnotourparticularchoiceofbasebutrathertheuseofpositionalvalueiniohevalueofanumeraldependsonitsplathering。Forexample,1984isshortfor4onesplus8lotsoftenplus9hundredsplus1thousand。
Itisimportaandheenumbersinparticularways。Inthischapter,wewillthinkaboutwhat,discoverdifferentapproaeetaveryimportaofheprimes),andintrodupleridingthem。
Howgwassortedout
Itiswafewmomentstoappreciatethattherearetwodistiheprocessofbuildingagsystembasedon,foriwobasictasksthatweimposeonarerememberinghowtorecitethealphabetandlearninghowtot。Theseprocessesaresuperficiallysimilarbutyethavefualdifferences。eisbasedoeralphabetand,roughlyspeakierdstoasouospeakwords。IislytruethattheEnglishlanguagehasdevelopedsothatitbewrittenusiof26symbols。However,ilediariesunlessweassigoouralphabet。Thereisnopartiaturalorderavailableawehavesettledonandallsinginschool,a,b,c,d,。。。seemsveryarbitraryiobesure,themorefrequeersgenerallyothefirsthalfofthealphabet,butthisisuideratherthaheoerssandt,forexample,soundingofflateintherollcall。Bytrast,theumbers,ornaturalheyarecalled,1,2,3,。。。etousinthatorder:forexample,thesymbol3ismeanttostahatfollows2andsohastobelistedasitssuccessor。toapoint,makeupafreshnameforeachsuumber。Sooer,however,wehavetogiveupandstartgroupiordertohaheunendingsequence。Groupingbytehefirststageofdevelopingasouem,andthisapproachhasbeenhroughouthistoryandacrosstheglobe。
Therewas,however,muchvariatioheRomansystemfavatheringbyfivesasmus,withspecialsymbols,VandL,forfiveandforfiftyrespectively。TheAemwassquarelybasedbytens。Theywouldusespecificletterstostandforimesdashedtotellthereaderthatthesymbolshouldbereadasaherthaerinsomeordinaryword。Forexample,πstoodfor80andγfor3,sotheymightwriteγπtodehismaylookequallyaseffidihesameasournotation,butitisnot。TheGreeksstillmissedthepoiiohevalueofeachoftheirsymbolswasfixed。Inparticular,γπcouldstillohesamenumber,3+80,whereasifweswitchtheorderofthedigitsihedifferentnumber38。
IntheHindu-Arabicsystem,thesedstageofionwasattaihebigideaistomakethevalueofasymboldepeupoothestring。Thisallowsustoexpressahjustafixedfamilyofsymbols。Wehavesettledoennumerals0,1,2,···,9,sothenormalemisdescribedasbaseten,butwecouldbuildouremupfrerorasmallerofbasicsymbols。Wemahasfewastwonumerals,0and1say,whichiswhatisknownasthebienusedinputing。Itisnotthechoiceofbasesize,however,thatwasrevolutionarybuttheideaofusingpositiorainformationabouttheidentityofyournumbers。
Forexample,riteanumberlike1905,thevalueofeachdigitdependsonitsplatherihereare5units,9lotsofonehundred(whichis10×10),aofohousand(whichis10×10×10)。Theuseofthezerosymbolisimportantasaplaceholder。Inthecaseof1905,notributiohe10’splace,butweorethatandjustwrite195ihatrepreseirelydifferentnumber。Iringofdigitsrepresentsadiffereisforthatreasonthathugenumbersmayberepresentedbyshs。Forinstanassigoeveryhumanbeihusingstringsendigitsandinthisersooeveryindividualbelongingtothishugeset。
&hepastsometimesuseddiffereheirwritingofhatismuchlesssignifithefaearlyallofthemlackedatruepositiohfulluseofazerosymbolasaplaceholder。InviewofhowveryahecivilizationofBabylon,itisremarkablethattheyamongthepeoplesoftheaworldcameclosesttoapositionalsystem。
&,however,fullyembracetheuseofthenot-so-naturalnumber0aheemptyregisterinthefinalpositionthewaywedotodistinguish,forexample,830from83。
&ualhurdlethathadtobeclearedwastherealizationthatzerowasindeedaedly,zeroisnotapositiveisahesameanduntilweiooureminafullytmanner,weremainhahisalstepwastakeninIndiainaboutthe6thturyAD。Ouremisdu-ArabicasitwasuniIndiatoEuropeviaArabia。
Livingwithandwithoutdecimals
Adoptingaparticularbaseforaemisalittlelikeplagaparticulargridsap。Itisnotintrinsictotheobjectbutisratherakintoasystemofatesimposedontopasaoftrol。Ourchoiceofbaseisarbitraryiheexclusiveuseofbasetensaddlesusallwithablihesetofumbers:1,2,3,4,···。Onlybyliftingtheveilweseeofaceforwhattheytrulyare。Wheionapartiumber,letussayforexampleforty-nine,allofushaveamentalpictureofthetwonumerals49。Thisissomewhatunfairtothenumberiionasweareimmediatelytypegforty-nineas(4×10)+9。Since49=(4×12)+1,itmayjustaseasilybethoughtofthatwayand,indeed,iy-hereforebewrittenas41,withthenumeral4nowstandingfor4lotsof12。Hivesthey-scharacteristhatitequalstheproduownasthesquareof7。Thisfacetofitspersonalityishighlightedihenthey-edas100,the1nowstandiof7×7。Wewouldbeequallyeouseanotherbase,suchastwelve,forourem:theMayayandtheBabyloy。Ihenumber60isagoodchoiceforagbaseas60hasmanydivisthesmallestnumberdivisiblebyallthenumbersfrhto6。Arelativelylargenumbersuchas60hasthedisadvatouseitasabasewouldrequireustointroduce60separatesymbolstostahenumbersfromzerouptofifty-nine。
Onenumberisafaotherifthefirstnumberdividesintotheseberoftimes。Forexample,6isafactorof42=6×7but8isnotafactorof28as8iimeswitharemaihepropertyofhavingmanyfactorsisahaohaveforthebaseofyourem,elvemayhavebeeerchoitenforournumberbaseas12has1,2,3,4,6,and12asitslistoffactorswhile10isdivisibleonlyby1,2,5,and10。
&ivenessandsheerfamiliarityofouremembuesuswithafalsedwithsomeinhibitions。ierwithasihanwithaicalexpression。Forexample,mostpeoplewouldrathertalkabout5969than47×127,althoughthetwoexpressiohesamething。outtheanswer’,5969,dowefeelthatwe‘have’thenumberandlookitihereis,however,aofdelusioninthisaswehaveohenumberasasumofpowersoften。Thegeneralshapeoftheherpropertiesferredmorefromthealternativeformwherethenumberisbrokendoroductoffactors。Tobesure,thisstandardform,5969,doesallowdireparisonwithotherareexpressediitdoeshefullhenumber。InChapter4,youwillseeonereasoorizedformofanumberbemuchmorepreitsbaseteion,vitalfactorshidden。
&agethattheasdidhaveoverusisthattheywererappedwithiylemiberpatterns,itwasnaturalforthemtothinkintermsofspeetricpropertiesthatapartiumbermayormaynotenjoy。Forexample,numberssuchas10ariangular,somethingthatisvisibleththetriangleofpinsinten-pinbowliriangularrackoffifteenredballsihisishatindfromthebasetendisplaysofthesenumbersalohefreedomtheasenjoyedbydefaultturebygasideourbasetenprejudidtelliwearefreetothinkofnumbersinquitedifferent>
Haviedourselvesinthisway,wemightchoosetofofactorizationsofaistosaythewaythenumberberodualleripliedtogether。Factorizatiohingofthenumber’siure。Ifwesuspeofthinkingofnumberssimplyasservantsofsderdtakealittletimetostudythemintheirhtwithoutreferehingelse,muchisrevealedthatotherwisewouldremaihenaturesofindividualnumbersifestthemselvesiernsinnature,moresubtletharianglesahespiralheadofasunflower,whichrepresentsaso-calledFibonaumber,ahatwillbeintroduChapter5。
Aglaheprimenumbersequence
&hegloriesofnumbersissoself-evidentthatitmayeasilybeoverlooked–everyohemisunique。Eaumberhasitsownstructure,itsowncharacterifyoulike,ayofindividualnumbersisimportantbeapartiumberarises,itsnaturehascesforthestructureofthetowhiumberapplies。Therearealsorelatioweerevealthemselveswhenwecarryoutthefualionsofadditionandmultipli。yumbergreaterthan1beexpressedasthesumofsmallernumbers。Hoestartmultiplyiher,wesooherearesomeurnupastheaooursums。Theseheprimesahebuildingbloultipli。
Aprimenumberisanumberlike7or23or103,whichhasexactlytwofactors,thosenecessarilybeing1andtheself。(Theworddivisorisalsousedasaivewordforfactor。)Wedonott1asaprimeasithasoor。Thefirstprimethenis2,whichistheonlyevehefollowingtrioofoddnumbers3,5,and7areallprime。erthan1thatarenotprimearepositeastheyareallerhenumber4=2×2=22isthefirstber;9isthefirstoddber,and9=32isalsoasquare。Withthenumber6=2×3,wehavethefirsttrulyberinthatitisposedoftwodifferentfactorsthataregreaterthan1butsmallerthantheself,while8=23isthefirstpropercube,whichisthewordthatmeansthatthenumberisequaltosomenumberraisedtothepower3。
&hesinumbers,wehaveourberbase10=2×5,whichisspeethelessbeingtriangularinthat10=1+2+3+4(rememberten-pinbowlihenhaveapairoftwinprimesin11and13,whicharetwosebersthatarebothprime,separatedbythenumber12,whitrasthasmanyfactorsforitssize。Ihefirstso-calledabundahethesumofitsproperfactors,thoselessthantheself,exceedsthenumberiion:1+2+3+4+6=16。Thenumber14=2×7maylookundisti,astheparadoxicalquipgoes,beiundistinguishednumbermakesitdistierall。In15=3×5,wehaveariangularisthefirstoddistheproductoftwoproperfactors。Ofcourse,16=24isnotonlyasquarebutthefirstfourthpower(after1),makingitveryspedeed。Thepair17aherpairoftwinprimes,ahereadertomaketheirowionsaboutthepeatureofthenumbers18,20,andsoon。Foreaakeae。