千米小说网

千米小说网>牛津数学英语 > Chapter 8 Numbers but not as we know them(第2页)

Chapter 8 Numbers but not as we know them(第2页)

15。Multiplibyirotatesaberbyarightangle

Thekihatewopropertiesareknownaslinearandareofparamountimportahroughoutallmathematics。Here,Iwishonlytodrawtoyourattentiohattheeffectofsuoperatioermisathetwopoints(1,0)and(0,1),forletussupposethatL(1,0)=(a,b)andL(0,1)=(foranypoint(x,y)wehave(x,y)=x(1,0)+y(0,1),andsousiiesofaliioain:

L(x,y)=L(x(1,0)+y(0,1))=xL(1,0)+yL(0,1)==x(a,b)+y(c,d)=(ax,bx)+(cy,dy)=(ax+cy,bx+dy)。

Thisinformationmaybesummarizedbywhatisknownasamatrixequation:

Herewehavedraleofmatrixmultipli,whidicateshoerationiscarriedoutirixisjustaregulararrayofrowsandbers。Matrices,however,representanotherkindoftwo-dimensionalnumericalobjed,whatismore,theypervadenearlyallofhighermathematics,bothpureaheyrepresentawholecorpusofalgebra,andmuathematicsstrivestorepresehroughmatrices,sousefulhavetheyprovedtobe。Twomatriceswiththesamenumberofrowsandthesamenumberofherareaddedery:forexample,tofihesedrowandthirdoftwomatrices,wesimplyaddthediriesiriquestion。Itismatrixmultipli,hivesthesubjeeortantcharadhowitisductedhasemergedofitsownathepreviousexample–eatryimatrixisformedbytakiproductofarowofthefirstmatrixwithanoftheseeaningthattheentryisthesumofthedingprodutherowofthefirstmatrixisplatopofthenofthesed。

MatricesfollowalltheusuallawsofalgebraexutativityofmultiplieaningthatfortwomatridBitisruethatAB=BA。However,matrixmultipliisassociative,meaningthatproduylengthmaybewrittenunambiguouslywithouttheneedf。

&ransformationsoftheplaypicallyrotationsabiiohroughtheisandtrasabin,andsocalledshears(),whichmovepointsparalleltoafixedaxisbyanamountproportioahataxisinamannersimilartotheagesofabookslidepastoher。Ahesetransformatioedbymultiplyingalloftherelevahertorevealasihathasthesameasallthosetransformationsaturn。Therowsoftheresultantmatrixaresimplytheimagesofthetwopoints(1,0)and(0,1),aswesawabove,knownasbasisvectors。

ItisnownaturaltolookatthematrixJthatrepresentsananticlockwiserotatileabinasitshouldmimicthebehaviouremultiplybytheimaginaryuniti。Si(1,0)istake(0,1)bytherotationandsimilarlythepoint(1,0)movesto(-1,0),thesetwovetherowsofourmatrixJ。TheresultJwillbeamatrixthathasthegeometriceffectph2×90°=180°abiethisbelowbymatrixmultipli。TofihebhtentryofJ2wetakethedotproductofthesedrowandsen,whichgives(-1)×1+0×0=-1+0=-1。Thepletecalhasthefollowingoute:

&rixIwithrows(10)and(01)istheidentitymatrix,socalledasitactslikethehatwhenmultipliedbyarixAtheresultisA。Thematrix-I,whichrepresentsafullhalfturnrotationabin,doesbehavelike-1inthat(-I)2=I。TheupshotofallthisisthatthematricesaI+bJ,whereaandbarerealhfullymimibersa+biwithrespecttoadditionandmultiplidsogiveamatrixrepresentationoftheberfield。Thematrixdiypibera+biis

&ricesthatrepresentthebersdoutewitho,aswasmentiohisdoesnotgenerallyapplytoallmatrixproduotherwayinwhichmatrimisbehaveisthatnotallofthemverted’。FormostsquarematricesA(amatrixwithequalnumbersofrowsandns),wemayfindaurixBsuchthatAB=BA=I,theidentitymatrix。Theexisteheirixhoweverdependsuponasinglenumberassociatedwithasquarematrixknownasitsdeterminahisisasumofsigsformedbytakiryfromeadnofthearray。Forthetypical2×2matrixarrayasintrodupage118,thedeterminantisthenumber=ad-bc。Determinantshavemanyusesandagreeableproperties。Forinstaheareascalefactoroftheatrixtransformation:ashapeofareaawillbetraooneofareaawhenundergoingatransformationbythatmatrix(andifisheshapealsoesarefle,reversingtheiion)。Whatismore,thedeterminaoftwosquarematricesistheproductofthedeterminantsofthosematrices。AsquarematrixAwillhaveainthecasewhere=0,inwhichcaseitwillerminantetricallytoadegeransformationwhereareasarecollapsedbythematrixtofiguresofzeroareasuchasalioreve。

Forthematrixofaberz=a+bi,we=a2+b2,whieverzeroexz=0–butofcoursethenumber0neverhadareciprocalbefore,ahethewiderarenaofthebers。Thisdoeshoweverthateverynon-zeroberpossessesamultipliverse。

&aheedgeofthevastworldsebra,representationtheory,andappliulti-dimensionalcaldthisisogofurther。However,thereadershouldbeawarethatmatricesapplytothreedimensionsaon-dimensioypiatrices。Althoughthearraysbeelargerandmoreplicated,thematricesthemselvesyetremaintwo-dimensionalnumericalobjects。

&heplexplane

Thefieldplexnumbersispleteintwoimportantways。Aninfinitesequenbersinwhichthetermstoeversmallercirclesofradiusthatapproaches0isvergent。Asequenbersapproachesalimitingber。Thisisalsotrueoftherealionals–thesuccessivedecimalapproximationstoanyirrationalasequeioapproachalimitoutsideoftherationals。Moreover,plete(orthealgebraisethatitbeshoolyionp(z)=a+bz+=0hasions,z1,z2,···,zn,whiallowsp(z)itselftobefullyfactorizedasp(z)=(z-z1)(z-z2)···(z-zn)。

Thisaunheberslargelyobviatetheheemfurtherbeyondtheplexplaisnotpossibletostruaugmeemthatsdalsoretainsallthenormallawsofalgebra。Moreover,thereareoeretainmuchalgebraicstructureatall,thesebeiernioonions。Althoughtheiruseisnotnearlysowidespreadasthatofthebers,thequaterowork,forexample,inthree-dimensionalputergraphics。Theos,whibethoughtofaspairsofquaternions,lalytheutativepropertybutalsotheassociativepropertyofmultipli。

Aquaternionisaheformz=a+bi+cj+dk,wherethefirstparta+biisanordinaryberaernionunitsjandkalsosatisfyj2=k2=-1。Iodomultipliwithquateroknowhowtheunitsmultiplywithohisisdetermiherulesij=k,jk=i,ki=jbutthereversedproductscarrytheoppositesign,sothat,forexample,ji=-k(iheseproductsmaybederivedfromthesiioion:ijk=-1)。Thequaternionsthenformanenhancedalgebraicsystemthatsatisfiesallthelawsofalgebraexutativityofmultipli,duetothesigiohereversedproducts。Thecyofthesystemohroughrepresentationby2×2matrices,butthistimelexrathertharies。Thenumber1isoifiedwithI,theidentitymatrixbuttheunitsi,j,aheirmatrixterparts:

&ypicalquaternionzhasasitsmatrix:

Thisrepresentatioernionsbymatriotunique,however,aherepresentationofthebersbymatricesalsohasequivaleives。Moreover,itispossibletorepreseernionswithoutemployingbersbutonlyattheexpenseofusirixarrays:thequaternionsberepreseain4×4matrilyrealries。

Newkindsofheextensionsofoldsystemshaveeabhtheoperformcalstheouteofwhiotbeaodatedbytheemasitstood。Everycivilizatiohtheumbers,butcalsinvmeofras,thoseinvolvioives,andasPythagorasdiscovered,thoseinvolvihsleadtoirratiohoughaveryaiohatnotallterscouldbedealtwithusingwholeheirratioswasasubtlediscoveryofadeeperkind。Asscebecamemoresophisticated,theemsrequiredhaveureiodealwiththeseadvasdonotgenerallylooktoewemsinawhimsicalfashiorary,theyareielyainglyatfirst,todealroblems。Forexample,althoughfirstihe19thtury,matricesaroseirresistiblyinquantummetheearly20thturywhenphysiteredaquantityoftheformq=AB-BAthatwaszero。Inanyutativesystemofnumbers,qwouldofcoursebe0,sothenumericalobjeeededherewerenotofakibefore:theywerematrices。

&hattheworldofmathematidphysibertypes。Althoughtherearekindsofmehisbook,thehatareohroughoutmathematidsotogeagreatdealsihalfofthe20thtury。

&ions,hourmathematicalballoos。WebeganatgroundlevelandhaveasdedtowhereIhopethereadergazedownupoheridmysteriousworldofnumbers。

已完结热门小说推荐

最新标签