&hefactthatrealrabbitsdohistrivedfashion,Fibonaumbersariseinnatureiyofways,ingplantgrowth。Thereasonsforthisarewelluoodbutarerelatedtomoresubtleattributesofthesequeheso-calledGoldenRatio,aweareabouttointroduce。
&typesressioietricprogressionsihefirstse。AlthoughtheFibonaeitherofthese,itdoeshorisinglinkwiththelattertype。IfweformthesequenceofdiffereheFibonace,becauseofthewaythesequenceisdefi0,1,1,2,3,5,8,13,···,thatiswerecovertheFibonaexceptthistimebeginningat0。Thishappenspreciselybecauseofthewaythesequened:thedifferewosecutiveFibonaumbersistheoelypregbothioseethisalgebraically,subtra-1frombothsidesoftheFibonaccireceabove。)NoristhesequericprogressioioofsecutiveFibonaumbersisnott。Allthesame,whetheratioofsuccessivetermsweseethatitdoesseemtosettledowntoalimitihisablebehaviouroftheratioesaboutquitequickly,asweseeaswedivideeaberbyitspredecessor:
Butwhatisthemysteriousnumber,1。6180。。。,whichweseeemerging?ThisnumberτisknownastheGoldenRatio,aeofitseometrigsthatlookaworldawayfromFibonacci’srabbits。Forexample,τistheratioofthediagonalularpentagontoitsside(seeFigure4)。Eaeetsaapointthatdivideseatotwopartsthatarethemselvesiioτ:1。Pairssidesaingdiagonalsformthefoursidesofarhombus(a‘square’parallelogram)ABCDasshonalscross,theyformasmalleriagon。
&agonandtheGle
Anotherwaythisvaluationhitsso-tiion,whichtiesτdirectlytotheFibonaumbers,andlorethisideainChapter7。
Inthelongrun,theFibonacebehaveslikeageressioheGoldenRatio。ItisthispretherwithitssimpleruleofformationthatcausestheFibooarisesopersistently。
StirlingandBellnumbers
&hebis,theStirlieingproblemsawovariables,irlingnumberS(n,r)isthenumberofartitiooforblooblockempty,andtheorderoftheblodwithintheblocks,isimmaterial)。(StrictlythesearecalledStirlihesed。Thoseofthefirstkind,whicharerelated,ethingquitedifferehenumberofermuteorcycles。)Foriwithmembersa,b,bepartitiohreeblojustoneway:{a},
{b},
{c},
intotwoblothreeways{a,b},
{c};{a},
{b,c},
and{a,c},
{b},
andintoasinglebloewayonly:{a,b,c};itfollowsthatS(3,1)=1,S(3,2)=3andS(3,3)=1。Siofnmembersbepartitionedioeither1blotonblocks,wealwayshaveS(n,1)=1=S(n,n)。IfthetriairlierthefashionofPascal’sTriangle,wearriveatthearrayofFigure5,andwenowexplairiaed。
&heisfyareeaningthateaberelatedtoearlierohearray。Ihthebis,eagnumberbeobtaihetwoaboveit,butitisnotsimplythesum。Whatismore,therowsymmetrywesawiiglethatgehebisisirling’sTriangle。Forexample,S(5,2)=15butS(5,4)=10。Theruleofreceissimpleenough,however。Theentry90,forexample,isequalto15+3×25。Thisisihegeuation:tofihebodyle,takethetwoimmediatelyaboveit,aotheseultipliedbythehepositionintherowyouareat。(Thistime,uigle,startyourrowtat1。)Inasimilarway,theentryS(5,4)=10=6+4×1。ItisooftheruleinitalicsthatdiffersfromthatoftheArithmetigle。Thatisenough,however,tomakethestudynumberssiderablymoredifficulttothatofthebis。Forinstance,wederivedasimpleexpliulaforeaialtihefactorials。Similarly,thereisaformulaforthenthFibonaumberintermsofpowersoftheGoldenRatio,butnothingofthekisfnumbers。
5。Stirling’sTriangle
Thereceruleisnothardtoexplain。Wearguesimilarlytothatforthereforthebis,andbydoihereedabovethatisidentiexceptflemultiplier。Ioformapartitioofsizenintoryblocks,rotwodistinctways。Wemaytakethefirsthesetandpartitionitintor-1yblo-1,r-1)ways,andthefihesetwillthehbloatively,artitiohesetintoryblocks,whibedoneinS(n-1,r)ways,andthendewhichoftherblockstoplaalmemberoftheset,givingamultiplierofrtothatnumber。Hehat
S(n,r)=S(n-1,r-1)+rS(n-1,r)forn=2,3,···
Usingthisreula,wemaycalculateeaeoftheStirlingTriaheo。Forexample,puttingn=7aain:
S(7,5)=S(6,4)+5S(6,5)=65+5×15=65+75=140。
uteS(n,2)andS(lyfromthedefinitionasfollows。Anarbitrarypartitiointoafirstsetaisdescribedbyabinarystrihhepresenceofa1indicatespreseanda0intheseasimilaredthatthenumberofsubsetsofais2herefore2nsuchorderedpairsofsets。Sihereishebloapartitiohisofindtheitiois,givingthenumber2n-1。Fiosubtrathisioexcludethecasewhereosisempty;hen,2)=2n-1-1。Youcheckthatthisrepresentstheseddiagonallineofnumbers1,3,7,15,31,63,···runningfromthethttothebottomleftinFigure5。
ThesumofanyrowoftheArithmetiglegivesthedihenumberofsubsetsofasetofagivensize。Similarly,summihr’sTriahenumberofwaysasetofoblodthisiscalledthenthBellnumber。
Partitionnumbers
Ifohehesettobepartitioidsootbedistinguishedfromohenumberoflittingthewholeupintoblocksisamuchsmallerinteger,knowitioicularpartitionasasumofpositiveihardtoorder:forexample,1+1+1+1+1isoionof5andtherearesixothers,forresent5as1+1+1+2,1+2+2,1+1+3,2+3,1+4,orsimplyas5。Thereforethe5thpartitiohatparestothe5thBellnumber,whitheStirlingTriaobe1+15+25+10+1=52)。Thereisformulaforthenthpartitiohereisaplexone,whichisitselfbasedoifulapproximatioheIndiangeniusSrinivasaRamanujan(1887–1920)。
Oryregardingpartitionsisthattheitionsofnintompartsisequaltotheitionsofninwhichthelargestpartism。OnewayofseeingthatthisistrueisthroughtheFerrar’sgraph(diagram)ofthepartition,whiorethaioionasadingarrayofdotsinwhichtherowsarelistedbydegsize。
IntheexampleshowninFigure6reseitionedas5+4+4+2+1+1。hensarealsolistedindelefttht。Ifwereflectthearrayalongthediagfromtoplefttht,werecoverasedFerrar’sgraphasshown,whibeihepartition17=6+4+3+3+1。Asimilarrefleofthesedgraphreturnsyoutothefirstathetwpartitiooohissymmetryallowsustoseethatthenumbersofpartitionsoftwtypesareequal:thedualofapartitioninwhichm,say,isthelargesthetoprowhasmdots)isapartitionhichdstoapartitionintomnumbers。Forexample,theitionsof17ihereforeequalstheitionsof17inwhich6isthelargestoccurs。
6。Dualpartitionsof17=5+4+4+2+1+1=6+4+3+3+1
Hailstonenumbers
Althoughnotagtool,thehailstonenumbersareintriguingastheyarealsodefinedrecursivelybuthavemoreofaflavourofthealiquotsequewemetihefollowiiongoesbyseveralzAlgorithm,theSyra,orsometimesjustthe3issimplytheobservationthat,beginningwithahefollowingprocessalwaysseemstoendwiththenumber1。Ifniseveby2,whileifnisodd,replaceitby3n+1。Forexample,beginningwithherulesthroughthefollowingsequence:
7→22→11→34→17→52→26→13→40→20→10→5→16→8→4→2→1
Aureistrueforn=7,ahasbeenverifiedforallnupbeyondamillionmillion。Thingsaredifferentifyoufiddlewiththerules:forinstance,repla+1by3sinacycle:
7→20→10→5→14→7→···。
Thesequenbersthatarisefromthesecalsbehavelikehailstotheyriseaicallyperiodbuteventually,itseems,alwayshitthegrou1000integers,morethaonemaximumheightof9232beforegto1。Thisenonintoapowerof2,fortheyareexaumbersthatcauseyouthtdowntogrouengas。
Allsortsfeaturesbedisgraphsandplotsbasedoonesequeofotherchaotisthatariseinmathsandphysig‘hailstooyourfavouritesearewillprovideyouwithawealthofinformatioriguiimesspeculative,butgenerallyinclusive。