千米小说网

千米小说网>牛津数学词典 > Chapter 1 How not to think about numbers(第2页)

Chapter 1 How not to think about numbers(第2页)

&otheprimes,thefirsttwentyofthemare:

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71。

eartheverybeginningofthenumbersequence,primesareohereislittleopportunityforsmallohavefactorizatioheprimesbeerarer。Forexample,thereisoripleofsees:thetrio3,5,7isunique,aseverythirdoddnumberisamultipleof3,andsothiseverhappenagaihinningproeoceis,however,quiteleisurelyandsurprisiiple,thethirtieshaveonlytwoprimes,thosebeing31aimmediatelyafter100therearetwo‘secutive’pairsoftwinprimesin101,103and107,109。

Theprimeshavebeenasourceoffasforthousandsofyearsbecausethey(aclaimthatweshalljustifyier)yettheyariseamouralnumbersihaphazardfashion。ThismysteriousaablefacetoftheirnatureisexploitediographytosafeguardtialunitheI,whichisthesubjectofChapter4。

gforprimality:primedivisibilitytests

&simple-mindedwayoffindingalltheprimesuptoagivennumbersuchas100istowriteallthenumbersdownandcrossoffthebersasyoufiahodbasedonthisideaiscalledtheSieveofEratosthenesandrunsasfollows。Beginbyg2andthencrossoffallthemultiplesof2(theotherevennumbers)inyourlist。Thehebeginninumberyoumeetthathasnotbeencrossedoff(whichwillbe3)andthencrossoffallitsmultiplesintheremaininglist。Byrepeatingthisprocesssuffitlyoften,theprimeswillemergeasthosecrossedout,althoughsomewillbedsomenot。Forexample,Figure1showsthewsofthesieveupto60。

Howdoyouknowwhenyoustopsieviorepeatthisprotilyouumberthatisgreaterthanthesquarerootestnumberinyourlist。Forinstance,ifyoudoyourownsieveforallo120,youwillhthesieveformultiplesof2,3,5,and7,andwhenyoucircle11youstop,as112=121。Atthatpoint,youwillhavecircledasfarasthefirstprimeexgthesquareroestnumber(120inthiscase)withtheremaiiouched。Allberswillnowhavebeeaseachisamultipleofoneormoreof2,3,5,and7。

1。Primesieve:theprimesupto60arethecrossedout

Itisveryeasytotestfordivisibilityby2andby5astheseprimesaretheprimefaberbasetehis,youoochealdigitofthenumberion:nisdivisibleby2exaitsunitsdigitiseven(i。e。0,2,4,6,or8),andnhas5asafadonlyifitendsin0or5。Nomatterhowmanydigitsthenumbernhas,weoocheckthelastdigittodetermiherleof2orof5。Forprimesthatdoo10,weodoabitmoreworkbutherearesimpletestsfordivisibilitythataremuchquirestodoingthefulldivisionsum。

Anumberisdivisibleby3ifandonlyifthesameistrueofthesumofitsdigits。Forexample,thesumofthedigitsofn=145,373,270,099,876,790is87and87=3×29andsonisinthiscasedivisibleby3。Ofcourse,lythetesttotheselfaakingthesumofdigitsoftheouteateachstageuisobvious。Doingthisfivenexampleproducesthefollowingsequence:

145,373,270,099,876,790→87→15→6=2×3。

Youwillseethatallthedivisioedherearesoquickthatyoudlehdozensofdigitswithrelativeeaseeventhoughthesenumbersarebillioerthahwhichyourhandcalculatorcope。

&sgiveheremaio20arebecausetheyareallofthesamegeheseroutinesareallsimpletoapply,althoughitislessobviouswhytheywhthejustifisarenotrecordedhere,theproofsoftheirvalidityarenotespeciallydifficult。

n=27,916,924→2,791,684→279,160→27,916→2,779→259→7

andsonisdivisibleby7。Eachtimewerunthroughtheloopofinstrus,weloseatleasto,sothenumberofpassesthroughtheloopisaboutthesameasthelengthofthehwhichwebegin。

&herornotnhasafactorof11,subtraaldigitfrtrunumbera。Forexample,thenumberisamultipleof11asourmethodreveals:

4,959,746→495,968→49,588→4,950→495→44=4×11。

Tocheckfordivisibilityby13,addfourtimesthefinaldigitttrunumberah7and11。Foriheurnsouttohave13asosprimefactors:

11,264,331→1,126,437→112,671→11,271

→1131→117→39=3×13。For17andfor19,wesubtractfivetimesthefinaldigitinthecaseof17,andaddtwialdigitwheingif19isafaoreapplyingthissteptothetrunumberthatremaiheprocessasoftenasweneed。Forexample,wetest18,905fordivisibilityby17:

18,905→1,865→161→11

soitisnotamultipleof17,butfor19,thetestgivestheopposite:

18,905→1,900=100×19。

&hisbatteryoftests,youreadilychecktheprimalityofallo500(as232=529exceeds500,so19isthelargestpotentialprimefactorthatyouneedyourselfwith)。Forexample,tosettlethematterfor247,wejustocheckfordivisibilityuptotheprime13(asthesquareoftheprime,172=289,exceeds247)。Applyifor13,however,welearnfrom247→(24+28)=52→13,thatleof13:(247=19×13)。

Thedivisibilitytestsforprimesountediofurnishdivisibilitytestsforthosearesquare-freeproductsoftheseprimes(divisiblebythesquareofanyprime)suchas42=2×3×7:anumbernwillbedivisibleby42exarioofdivisibilitytestsfor2,3,asforthosehavesquarefactors,suchas9=32,doically,althoughitisthecasethatnhas9asafadonlyifthatistrueofthesumofthedigitsofn。

Youmightask,afterthousandsofyears,haven’tthoseclevermathematieupwithbetteraicatedmethodsoftestingforprimality?Theanswerisyes。In2002,arelativelyquickwaywasdiscoveredtotestifagivennumberisprime。Theso-called‘AKSprimalitytest’doesnot,however,providethefactorizationofthegivehappee。Theproblemoffindingtheprimefactivehoughinprinciplesolvablebytrial,stillseemspractitraelylargeintegers,andforthatreasonitformsthebasisofmuaryeno,asubjecttoillreturninChapter4。Beforethatweshall,iters,lookalittlemorecloselyatprimesandfactorization。

已完结热门小说推荐

最新标签