Andthisworksquitegenerally。Iofindtheremainderwhensomepowerabisdividedbynsay,weaketheremainderrwhenaisdividedbyraaindersaswetakesuccessivepowersofr。iththeremainderr,whichwillbeaheraoissaythatwearewmodulaiplesofnthatmayarise,astheyleavearemainderof0whendividedbyn,andsotributetothevalueofthefinalremainderr。
AllthisservestogiveanindithatthebyBobtoAlice,memodulon,deedbecalculatedwithouttoomucheffortonbehalfofBob’sputer。Allthesame,thenumbersinvolvedareiybig,somoreexplanatiooshowthattheydled。Thelargepowersinvolvedinebedealtwithinstagesbyaproasfastexpoion。Withoutgoihemethodinvolvessuccessivesquaringandmultiplyioarriveatmemodulonwiththebinaryfuidihmthroughtoquidtherequiredremaiivelyfewsteps。
EuclidshowsAlicehowtofindherdegnumber
&erddusioolthatisover2,300yearsold,theEuAlgorithm,whichwillbeexplainedi。Eve’sputercouldofethingifitjustknewwhichequationtosolve。However,sindqareprivatetoAlice,sois(p-1)(q-1)akobegin。
&otheEuAlgorithm,thisbeginsfromtheobservationthatitispossibletofionfabersa>bbysuccessivesubtra。(Thehcfisalsoknownasthegcd–greatestondivisor。)Wejustr=a-bhasthepropertythatanyonfaytwoofthethreenumbersa,b,andrwillalsobeafactorofthethird。Forexample,ifonfactorofaandb,sothata=db=cb1say,weseethatr=a-b=ca1-cb1=c(a1-b1),givingusafactorizationofrinvolvingthedivisorparticular,thehdbisthesameasthehdr。Sihesenumbersarelessthana,wehesameproblembutappliedtoasmallernumberpair。Repetitionofthisideatheuallyleadtoapairwherethehcfisobvious。(Iwonumbersinhauallybethesame,forifnotwecouldproorestep;theirohenthenumberweseek。)
&ofindthehcfofa=558andb=396,thefirstsubtrawouldgiveusr=558-396=162,soournewpairwouldbe396and162。Since396-162=234,ourthirdpairbees234and162,aihefulllistofnumberpairsis:
andsothehcfof558and396is18。
Itispossibletowritedownthehberpairfromtheprimefactorizationsofthenumbersiion。Inthisexample,558=2×32×31,while396=22×32×11;takingtheonporimeeothefactorizatiohehcfas2×32=18。heless,ferakesmuchlessworktouseEuclid’sAlgorithmasitisgeoperformsubtrasthantofiorizations。
AnotherbonusoftheEuAlgorithmisthatitisalossibletoworkitbadinsodoihehtermsinaltwooseethisinathepreviousexample,itisbesttopressthecalwhenthesamenumberappearsseveraltimesoverinthecourseofthesubtras,representingthisasasiionasfollows:
558=396+162
396=2×162+72
162=2×72+18
72=4×18。
Beginningwiththesedtolastline,weleequatioetheieremaiime。Inthisexample,byusingfirstthepeioheo>
18=162-2×72=162-2×(396-2×162)=5×162-2×396
andfinallyusiequatioethefirstieremainderof162:
=5×(558-396)-2×396=5×558-7×396=18。
48=4×11+4
11=2×4+3
4=1×3+1ingthatthehdeisindeed1。Reversihm>
1=4-3=4-(11-2×4)=3×4-11=3(48-4×11)-11=3×48-13×11。
Thisgivesaninitialvalueofd=-13asthesolutiontotherequirementthat11dleavesremainder1upondivisionby48,setapositivevalueofdintherequiredraothisd=48-13=35。
AndinpassingitiswelltopointoutthattheEuAlgorithmprovidesthemissinglinkinourproofoftheuniquenessofprimefactorizationasitallowsustoverifytheeupropertythatifaprimepisafactoroftheproductab,sothatab=pcsay,thenpisafactorofatleastoneofaandb。Thereasonforthisisthatifpisnotafactorofathen,sincepisprime,thehdpis1。ByreversingtheEuAlgorithmliedtothepairaahenfindintegersrandssaysuchthatra+sp=1。Thisisenoughtoshoisthenafactorofbfor,sinceab=pc,
b=b×1=b(ra+sp)=r(ab)+psb=r(pc)+psb=p(rc+sb)。
Thisistherequiredfactorizationofbthatfeaturestheprimepasafactor。
In,theheRSAengmakesthesystemsound,althoughvariousprotocolsthathavenotbeenexplaiberespeuardtheiyofthesystem。Thereareissuesofauthentifi(whatifEvetactsAlidingtobeBob?),ion(whatifBobpretendsthatitwasEvewhoseoAlididentityfraud(whatifAliceabusestialidentifittoherbyBobaoimpersonatehimonliherweakhesystembeexposedwheableorrepeatedmessagesproliferate。However,thesedifficultiesmaypotentiallyariseinanypublickey。Theyeandinthemaiotheunderlyieiquesthatensurehighqualityandrobusten。
ThischapterhasdemonstratedamajorappliehetheoryofdivisibilityandremaimathematicsofEudthe18th-turytributionofEulerallowsthistobeexplaionlyinbroadpriiail。
&partofourbookclosester5whiespecialclassesofintegersassociatedwiththeeiourallyroupings。