关于空间的那一部分,也许要多说几句话才行。任何有量的,能作单位的空间都有对内与对外底分别。普通所谓“这个地方”与“那个地方”都是可以作单位的空间,也都是有内外的空间,同时这些都是有所指的空间。我们对于所指在此处用不着提出讨论。在这里我们用居据两字表示能作单位的空间。对于那能作单位的空间底范围之外,我们说那空间有所居,对于那空间之内的空间,那空间有所据。这分别底本身也许是无所谓的,但它有以下的用处,现在暂且不谈。
五·一○ 任何时面据而不居,往而不返,任何空线居而不据,不往不来,任何时点—空点既往而不返又居而不据。
任何时间总是往而不返的。请注意这里所说的是往而不返,已来而未往的情形当然不在这句话底范围之内。一时面是一时间底缩小程序底极限,它底位置就是那时间底位置。原来的时间过去,与它相应的时面也就过去;不仅过去,而且从此以后就不再来。所以往而不返。但时面之所以为时面是因为它虽无时间积量而兼是一时间的整个的空间;它虽无时间上的长短,而有空间上的宽窄、厚薄、长短。可是,它是整个的空间,所以它无外,无外所以不居;任何其余非整个的空间都在它底范围之内,所以它有内,有内所以有所据。此所以据而不居。任何空间均有所据,但是,如果我们把一空间缩小,它底外面增加,它底里面缩小,则这缩小程序底极限有外而无内。空线既是这缩小程序底极限,所以它居而不据。可是空线是无空间积量的整个的时间。既是整个的时间,所以它不往不来。其所以说不往不来,无非是因为我们这里所注重的是“一空线”。把“一空线”当作一整个的线看待(其实也没有别的看法),在任何时间,它没有完全地往,在任何时间也没有完全地来。如果我们把空线分作部分,我们当然可以说有既往的部分,也有未来的部分。但是,这个说法注重既往与未来底分别,既往的部分绝对不是未来的部分,所以这个说法所注重的不是“一空线”。注重“一空线”,它不往不来。
时点—空点最没有问题,它既无时间积量又无空间积量,没有时间积量所以同时面一样,往而不返,没有空间积量所以同空线一样居而不据。
时面不仅在空间上无外所以不居,而且在时间上不能打住,所以也不“居”。空线有外而无内,所以居而不据,但它不仅在空间上有所居,而且本身既是整个的时间,所以没有任何部分的时间底流,因此在此时间上也可以说“居”。
五·一一 任何时面,任何空线,任何时点—空点在时—空秩序中均有至当不移的位置。
我们先从时—空中的时间着想,先假设在时流中,一段一段的长短相等的时间。我们一想就想到如果我们把数目引用到各段的时间上去,顺着时间川流底历程,每一段均有一相当的数目。不仅没有一段是其它任何另一段,而且每一段对于任何其它一段的先后关系与对于其它任何另一段的先后关系完全一致。这完全一致的情形可以用数目表示出来。从各段底排列上说,整个的排列是秩序,从这排列中的任何一段说,它有它在这排列中的至当不移的位置。如果某一段的时间没有至当不移的位置,则某一段的时间不是某一段的时间。任何一段时间在时间川流底秩序中之有至当不移的位置是不能否认的。这当然不是说各段时间不移,这是说各段时间在时间秩序中的位置至当不移。一段一段的长短相等的时间如此,其它不相等的一段一段的时间,分解化后,也是如此。时面是各段时间缩小程序底极限,各段时间既有至当不移的位置,相应于各段时间的时面也有至当不移的位置。
对于空间我们也可以用同样的办法。我们可以把空间分成宽长厚相等的一格一格底空间,用一格作起点把在它前后、左右、上下的一格一格底空间都给以相当的数目。每一格对于其它任何一格底距离底宽长厚的关系与对于其它任何另一格的距离底宽长厚的关系完全一致。这完全一致的情形也可以用数目表示出来。从各格底排列说,整个的排列是秩序。从这排列中任何一格说,它有它在这排列中至当不移的位置。每一格可以缩小,而这缩小程序底极限是空线。各格既有它底至当不移的位置,相应于各格的空线也有至当不移的位置。
时面与空线既均各有其至当不移的位置,它们底交叉点当然也有。用与以上相似的办法,我们可以得时点—空点底排列。此排列为秩序,而在此秩序中,任何时点—空点均有它底至当不移的位置。
这里说的是位置至当不移,既不是说时间不移,也不是说用以表示此位置的数目至当不移。这里数目之与位置有点像语言之与实物。一位置可以用不同的数目表示,可是,如果我们用两不同的数目表示位置,其余位置的数目虽彼此不同,而仍可以彼此对译。这也就表示位置至当不移。
五·一二 绝对时—空底绝对秩序以时点—空点为关系者。
本条一方面表示这里所说的秩序是绝对的,这里所说的时—空也是绝对的。绝对的时—空自然不仅是相对的时—空。手术论的时—空是相对的时—空,用度量于时—空后的时—空是相对的时—空,个体与个体之间的时—空是相对的时—空。这里的绝对不是没有对,它底意义如下:时—空底秩序底根据是时面、空线、时点—空点底位置。这位置既至当不移,秩序也至当不移。位置既至当不移,秩序既至当不移,任何时间空间的距离在此至当不移的秩序中也至当不移。个体与个体之间的时空关系底最后根据是本条所说的时—空底秩序,而本条所说的时—空底秩序不根据于个体与个体之间的时空关系。所谓绝对就是不与个体相对。
另一方面也表示这秩序以时点—空点为关系者。前一方面的思想如上所述,后一方面的意思也要加以注解才行。
绝对时—空底秩序不能以个体为关系者。绝对的时间与绝对的空间均不能以个体为关系者,前者只能以时面为关系者,后者只能以空线为关系者。既然如此,绝对的时—空只能以时点—空点为关系者。也许我们一想就想到关系者一定要个体才行,至少要“体”才行。这实在用不着,这里所谈的秩序根本不是个体底秩序,我们不能以个体之间的秩序底条件移置到一根本不是个体与个体之间的秩序上去。
五·一三 个体化的时—空底秩序根据于绝对时—空底秩序。
个体化的时—空底秩序,各个体在时—空中的位置,各个体彼此的距离(无论时间或空间),从经验、试验、度量、手术方面着想,都直接或间接地根据于个体与个体之间的关系。但从标准、理解、意义方面着想,它们不能不根据于绝对时—空底秩序。这个问题在我论手术那节文章里曾提出一方面的道理。仅有手术论的或相对的时—空,在科学范围之内或者是已经够了,已经不必多求;但在哲学范围之内,手术论的或相对的时—空总是不够用的。罗素好像曾表示过相对论一方面固然是相对论,另一方面也可以说是绝对论。因为要在引用相对论的条件之下,我们在事实上才能找出实在准确的时—空度量。可是,这实在准确的度量底理论上的标准仍是绝对的时—空。既然如此,本条表示个体化的时—空底秩序根据于绝对时—空底秩序。
请注意这里所表示的不必与科学家之所发现有任何冲突。我们用不着说科学家所谈的时—空应该是或应该有绝对的时—空,我们也用不着表示在科学范围之内相对的或手术论的时—空不够科学家本身底用处。个体与个体之间的时—空秩序仍是他们底相对的秩序底根据,仍是他们谈时—空秩序时所谈的最后的对象。如果研究哲学的人们认为科学家在科学范围之内也要用绝对的时—空,他们就跑到他们自己所研究的范围之外去了。同时,如果一科学家不兼是一哲学家他决不至于说在科学所研究的范围之外没有绝对的时—空。
五·一四 特殊是现实之往则不返或居则不兼的可能。特殊是一现实的可能。
本条要注解才行。第一,我们须注意特殊是可能。如果我把本条底前一部分视为定义,它就是特殊这一可能底定义。是可能的特殊当然不是这一特殊那一特殊的东西。在日常生活中,我们所指的特殊大都是个体或个体底现象;我们所想像的特殊也就是个体;但如果我们加以思考,我们会感觉这一特殊与那一特殊之所以同为特殊,就是因为它们各自现实了特殊这一可能。
第二(1),这里所谓特殊也就是普通所谓特殊。普通所谓特殊有两方面的意思。一方面是往则不返,另一方面是惟一无二。这两方面的意思可以分开来,也可以联合起来。如果我们分别地从时间或空间着想,我们可以说在任何一时间内,所有的个体都占惟一无二的空间。在此情形之下,我们用不着谈往则不返这一层。所谓惟一无二就是本条所说的居而不兼。可是,如果我们从空间方面着想,在任何空间,所有的个体在时间川流中都分别地往而不返,无论它们在空间上的位置如何。这就是本条所说的往则不返。所以分开来说,只要往则不返就是特殊,只要居则不兼就是特殊。
联合起来,这两方面的意思是一个意思。一时间不能有同地的两个体,在同一时间内,任何一个体不能兼其它个体之所居。一地方不能同时为两个体所据。在同一地方,任何一个体不能与其它任何个体同往返。任何一个体所经过的以往居惟一无二而与以往时间为一一相应的空间;任何所居的惟一无二的空间与时间一一相应地往而不返。
以上两方面的意思同时并重固然可以,注重任何一方面也可以。每一方面都有它底具体的特殊。特殊是一现实的可能。从往则不返这一方面看来,在任何时间的本然世界往则不返。这当然就是说在任何时间总有具体的特殊。
五·一五 时面、空线、时点—空点都是可能,都是特殊底极限。
时面、空线、时点—空点都是可能,也都是特殊。它们都是可能,因为它们都是可以下定义的,可是,假如它们现实,这些现实也都满足特殊底定义。视为可能,它们都是老不现实或老是成虚的可能。它们既然是可能,当然不是不可能,虽然不是不可能,然在任何有量时间它们都不会有能。它们既然没有能,它们当然没有现实。它们没有现实,所以它们底分子(即这时面,那时面等等)我们只能以数目表示,而不能以任何旁的方法表示。
如果它们现实,则照定义,这些现实也满足特殊底定义。特殊是现实的可能,而且是具体化个体化的可能,所以有特殊的个体。但任何特殊的个体均没有尽特殊底性,那就是说没有达到特殊底极限。在任何有量时间,特殊底极限是不会达到的,所以也是老不现实的可能。我们把这两方面合起来,我们可以看出时面、空线、时点—空点都是可能,都是特殊底极限。
后一层非常之重要。时面、空线、时点—空点既都是特殊底极限,也都是特殊的个体底极限。照以上五·三、五·五两条底说法,时面空线均有与它们相应的特殊时间特殊空间。特殊的时间与特殊的空间,因为时—空个体化都是可以指出来或直接经验得到的。这些特殊的时间空间既可以经验得到,我们虽然指不出与它们一一相应的极限,而我们仍可以用数目分别地表示这些极限底不同的位置。
五·一六 个体底特殊化,即个体底时—空位置化。
个体化的时—空底秩序根据于绝对时—空底秩序,而绝对时—空底秩序又根据于时面、空线、时点—空点底至当不移的位置。这位置都是特殊,所以个体化的时—空底任何位置也是特殊的。既然如此,个体之在某一时某一地也是特殊的个体。所以个体底特殊化就是个体底时—空位置化。个体既有时空,不会不时—空位置化。
但特殊有等级,不然它不至于有极限。所谓特殊底极限就是最特殊的特殊,无以复加的,不能达到的特殊。既有极限问题,当然有等级与程度底问题。设在T时间,甲个体占t1,t2,t3,…,tm,…,tn,则甲tm比甲T更特殊。设在tm甲个体占t21,t22,t23,…,t2m,…,t2n,则甲t2m比甲tm更特殊。
我们这里所谈的特殊既是个体化的特殊或特殊的个体,它们底时空上的位置也是个体化的时—空底位置。既然如此,空间上的特殊化与时间上的特殊化一一相应。仍以甲个体为例。设在p空间甲个体在t1,t2,t3,…,tm,…,tn上占p1,p2,p3,…,pm,…,pn空间,则甲Pm比甲P更特殊。设在pm,甲在t21,t22,t23,…,t2m,…,t2n上占p21,p22,P23,…,p2m,…,p2n,则甲p2m比甲pm更特殊。这里当然有动或不动底问题,但我们现在不提出讨论。
以上表示个体底时—空位置化。为什么特殊化就是时—空位置化呢?在T时间,甲t1,甲t2,甲t3,…,甲tm,…,接续地往则不返,在tm时间,甲t21,甲t22,甲t23,…,甲t2m也接续地往则不返。同时p1,p2,p3,…,pm,…,pn,为甲所居的时候,不能为任何乙个体所兼居,而为乙个体所居的时候也不是甲个体之所能兼居,此所以时—空位置化与特殊化是一件事体。
五·一七 时面上的个体是个体时间特殊化底极限。
前此我们已经表示特殊有两方面的意思,这两方面的意思可以合也可以分。如果分开来,谈一方面已经够了。我们以后特别注重时间方面的特殊化,因为比较起来时间上的特殊化似乎简单得多。同时以时间上的特殊化为主体,空间也有特殊化底问题。而特殊的空间仍可以顾虑得到。
时面上的个体是无时间积量的个体。在定义上时面有空间积量,但时面是特殊底极限,是老不现实的可能,所以它不会有个体,那就是说时面上没有个体。时面上虽没有个体,而个体在时间上的特殊化底极限仍是时面上的个体。个体在时间上的特殊化虽不能达到时面,而仍以时面为极端特殊化底标准。