A。类的推演
本节的1段承上接下,介绍具类词的命题;2段为类的推算。所谓类的推算者就是近代符号逻辑新兴时期的calculusofclasses。
1。普遍的具类词的命题。
本段的命题可以分为三组。第一组表示类的基本质,第二组是具类词而同时又具叙述词的命题,第三组的命题表示“类”与个体有同样的质。本段的各命题既大都有注解,各组命题无另条表示的需要。
(具类词的命题表示定那一类的命题函量的外延质。它的真假值根据于定类的命题函量的外延,而不根据于引用那一命题函量为定类的命题函量。)
(这三命题成一套,而最后这一命题总结前两命题。它表示只有两真假值相等的命题函量才定一类。那就是说,两命题函量的真假值不相等,它们所定的类是两类。所谓命题函量的真假值相等者,就是说满足第一命题函量的个体就是满足第二命题函量的个体。这是类的根本条件。)
(如果两类相等,则此两类中任何一类有一性质,另一类亦有之。)
(这三命题中第一命题表示类的相同有自反质,第二命题表示类的相同有对称质,第三命题表示类的相同有传递质。但这三命题不是直接从第二章C节2段的13。15,13。16,13。17推论出来的。不是fx的值,那就是说,x不指这样的东西,而也不是x=y的例。)
(任何类A是满足φz的个体,同时也是满足ψz的个体,此两命题函量所定的类是一类。)
(此命题表示只有ψx是真的,x才是ψx所定的类的分子,“”代表“是分子”,这是个体与个体的类的关系。它不是包含关系,它没有传递质。从这一方面着想,“所有的人都是有理性的,所有的圣贤都是人,所以所有的圣贤都是有理性的”与“所有的人都是有理性的,孔子是人,所以孔子是有理性的”这两个三段论的形式根本不同。)
(两类相同等于说任何x属于头一类就是说它属于第二类。总而言之,对于类所注重的是外延。)
(x与y相同等于说x属于任何类就是说y属于该类。此命题与20。25那一命题一样把类词用为表面任指词。)
(此命题与20。31一样,只不过A、B,这样的符号简单而已。)
(这个命题不仅是具类词的命题,而且是具叙述词的命题。举例来说:《春秋》的作者属于人类等于说《春秋》的作者是人。以φ代表作《春秋》,(τx)(φx)就代表《春秋》的作者;以ψz代表z是人,z^(ψx)就代表满足ψz这命题函量的个体,那就是说人类,而此命题的前一部分就是说《春秋》的作者是人类的分子;此命题的后一部分说《春秋》的作者是人。)
(设以b代表孔子,(τx)(φx)仍代表《春秋》的作者;这个命题说《春秋》的作者是孔子等于说《春秋》的作者是任何一类(A)的分子,就是说孔子是那一类的分子。)
(仍以举例表示:有《原富》的作者就是说有某个体,说《原富》的作者属于一类等于说那个体属于那一类。)
(这里表示不仅有叙述个体的词,而且有叙述类的词。(τA)(fA)这符号与(τx)(φx)那一符号有同样情形,不过事实上的例比较困难一点而已。第三组表示类与个体有同样情形的命题,本书不抄。)
2。类的推算(calculusofclasses)。
a。在本书第四部的第一章A节里,有一系统通式。那个系统通式可以有各种不同的解释。如果我们以类去解释那个系统通式,我们所得的就是这里的类的推算。如果我们以命题去解释那系统通式,我们所得的就是本书第三部的第一章。
经解释后,那个系统通式,所有的基本命题,在此处大都能证明;其所以如此者,因为这些基本命题所表示的道理,前此已经承认。
这里的类的推算未开始之前,就有好几个定义,可是我们不必抄写,因为定义既下,跟着就有好几个命题把这些定义都容纳在里面。
b。所选择的命题。
定义就是本命题的后部。这符号可以读成“A类包含在B类之中”。这命题说:A类包含在B类等于说如果任何个体属于A类,则那一个体属于B类。在P。M。的程序中,作者利用命题的蕴涵以表示类的包含关系。)
定义就是本命题的后一部分。这符号可以读成“既是A又是B的类”。满足“x既属于A又属于B”这一命题函量的“x个体”就是类。)
(情形同上,不过改“与”为“或”而已。)
(“—A”即非A类。非A类就是满足“x不属于A类”这一命题函量的个体。这里利用否定命题以表示负类。)
(“A—B”可以读成A类与非B类,或既A而又非B类。有定义说A—B就是。)