千米小说网

千米小说网>黑洞定律牛顿 > Chapter 3 Characterizing black holes(第1页)

Chapter 3 Characterizing black holes(第1页)

Chapter3Charagblackholes

InChapter1,weiheasssingularity,fravitationalcollapse,andsurroundedbyahorizon。ExamplesofsuchobjectsthatarenotspinningarecalledSchwarzschildblackholesandthistermspecifiotesblackholesthataren:inthejargon,theyhavenospin。Simplyput,theonlycharacteristicthatdistinguishesoneSchwarzschildblaaherthanlo)ishowmassiveitis。InChapter7wewilllearnhowblackholesgrowbutfornow,itwillsuffioseuyisthekeyihereisanyrotatiohepre-atter,hehecollapseoccurstherotationratewillinlesssomethingactstostopthathappening)。Thisarisesduetoaremarkablephysiownastheservationofangularmomentum。Thislawisillustratedbyapirouettingskater:asshepullsherarmsinshespihesameway,ifthestarthatgivesrisetotheblackholeisgentlyrotatiheblackholethatitultimatelyformswillbespinningsignifidistermedaKerrblaoststarsareinfag,becausetheythemselvesarefravitationalcollapseofslmassivegasclouds。(Ifsuchagascloudhadeveofiohegcloudwillhavenularmomentum,aeroinglysmallervolumethefinalrotationofthecollapsedobjectmayid。)Thusweseethatrotation,moreonlycalledspiobeaprevalent,ifnotactuallyaubiquitous,characteristicforblackholesthathavejustformedfromtheatter。Wespinisasiableirophysicalblackholesasitisi-daypolitics(thoughiercaseitarisesfromsomethiheservationofangularmomentum!)。

Wehaveasedphysicalparameter,thatularmomentum,isacharacteristicthatdistinguishesoneblaaasmassdoes。Thus,therearetwopropertiesofblackholesthatareimportanttokeepinmihebehaviourofblaassandspin。Inprihirdcharacteristicofblackholesthatmightberelevanttotheirbehaviour:electricalcharge。Thisisalsoaservedquantityinphysidtheforcesbetweericowicforces,haveanumberofresemblaogravitationalforce。Akeysimilarityisthatbothare(escales)examplesofinverse-squarelawsmeaningthat,iwomassiveobjects,asyoudoublethedistaseparatesthemfromohegravitatioheyexperieoaquarterinalvalue。Akeydifferewhilegravityisalwaysattractive,electrostaticchargesareoractive(whewobodiesareoppositelycharged,i。e。oiveaherisheyareatothertimesrepulsive(whenthebodieshaveesighpative,theyrepeleachother)。Iftwedbodieshavethesametypee,theicrepulsioopreventthemg,evenifgravityistendingtoattractthem。Sowhilechargeprihirdpropertyofblackholesthatohopetomeasure,iyachargedblackholewouldberapidlyhesurroundiistherefoodoperationalassumptionthatthereareopropertiesofblackholesthatdistinguishonefromanother:massandspin。That'sall!

Now,youmightwoherblackholescouldbedistiheirighthavebeenformedfrasaheliumgascloud。Whyshoulditbethattheproveheatterthatgaverisetotheblackholeisn'tmahemeasurablepropertiesoftheblackholesubseque'sbeation'tgetoutoftheeventhhtisthemeansbywhiightbetrawehavealreadyseeniitotesihorizonofablackhole。Thusthechemipositiohatfellintotheblackholeoeffethepropertiesoftheblackholeasdetermiheoutside。Itwouldtothinkofgravityassomethiogetoutof'theblackhole。Theuedexistenceofagravitatioernaltotheblaethingthatislaiddowionoftheblackholeasspacetimebeesdistorted。Noinflueniheblackholegetheexterertheeventhorizonhasformed。

Blackholeshavenohair

Wheodesotherperson,adistinguishingcharacteristicthatisofteheirhair(forexample,strawberryblreyorchocolatebrown)。Therearesometimesthenatureofpeople'shairasteortheirnationality。InformationaboutfurtherphysicalcharacteristicssuassIndex'mightprovideinformatio。Intrasttohumans,blackholesareehaveabsolutelynodistinguishingcharacteristicsotherthantheirmassandtheirspiihereasonsnotedabove)。ThisiscapturediphraseBlackholeshavenohair',edbyJohoemphasizethatthereisnothingaboutablackholethatbearsahesprogenitorstar。Notitsshape,notitslumpislasmagitschemiposition。Nothing。Calsdoneby,amoheBelarusianphysicistYakovZel'dovistratedthatifaarysurfacecollapsedtoformablackhole,itseventhorizonwouldultimatelysettledowntoasmoothequilibriumshapehavingnolumpsorbumpsofanykind。So,ablaeverhasabadhairday!Theonlythingsyouowaboutitareitsmassandspin。

Spiy

&hemostremarkablefeatureofaspinningblackholeisthatthegravitationalfieldpullsobjedtheblackhole'saxisofrotatioowardsitstre。Thiseffectiscalledframedragging。AparticledroppedradiallyontoaKerrblackholewilla-radial(i。e。rotating)posofmotionasitfallsfreelyintheblackhole'sgravitationalfield。

Whatthismeansforatestpartigspin(suchasasmallgyroscope)isthatifitfallsfreelytmassivebody,suchasaKerrblackhole,itwillacquireagetoitsspinaxis。Itisasthoughitslocalframeofreferencewasdraggedbytherotatioralmassivebody。Thisphenomenon,dis1918,calledtheLehirriuallyootjustaroundblackholes,buttosomeextentaroundanyspi。Ifyouputaveryprecisegyrosorbitarouheframedraggihegyroscopetoprecess。

ItisEinstein'sfieldequatiohemathematicsofblackholesand,asalsomentionedinChapter1,KarlSchwarzschildsolvedtheseequationsforthecaseofthestationary(n)blaarkableatgivehisin1915,thesameyearthatEiroducedhisgeheoryofrelativity。ThecaseofthespinningblackholewastreatedmuchlaterbyNewZealanderRoyKerrin1965。Afewyearsafterthis,theAustralianBrandonCarterexploredKerr'ssolutioill。CartercarriedoutahiionintothecesoftheKerrmetric。Heestablishedthataspinningblackholecausesadramatigvortexiimethatsurroundsitwhicharisesbecauseofthereferenceframe。Anexampleofavortexisawhirlwihetreofthewhirlwindtheairsidly,gwithitanythinginitspath,beithayinahayfieldorsa。Furtherfromthewhirlwindtheair(andhencehayorsand)rotatesmuchmoreslowly。Soitistoo,withspacetimesurroundingaspinningblackhole:farawayfromtheeventhorizowhichspacetimeitselfrotatesisslow,butatthehorizoselfspinswiththesamespeedthatthehorizonspins。

&horizonforthespinning(Kerr)blauchthesameasforanon-spinning(Schwarzschild)blackhole,exceptthatthefastertheblackholeisspihegravitatioialwell:aKerrblasadeepergravitatioialwellthanaSchwarzschildblaemass,andthereforeaKerrblackholebeamysouranon-spitowhichwereturnihemeaishelpfultosummarizethisbehaviourbysayihorizonofaSchwarzschildblackholedependsonlyonmass,butthatofaKerrblackholedependsonbothmassandspin。

Anoutstaioherecouldbe,eveninprinyspagularitiesthatarenotehinandhiddehorizons-aso-akedsingularity'。Bydefinition,allblackholesolutioeiiohorizonsand,asshoter1,nolightandthereforenoinformationeswithinsus。Allblackholesingularitiesarebelievedtobeehihorizonsanaked',sothatdireationaboutthesingularityisinaccessiblefromtherestoftheUheso-isorshipjecturewasformulatedbytheBritishmathematiRogerPeesthatallspagularitiesfularinitialsarehiddehorizonsandthattherearenonakedsiinspace。

Howmuistoomuch?

Thereisalimittohowmugularmomentumablackholehave。Thislimitdependsonthemassoftheblackhole,sothatamoremassiveblackholefasterthanalessmassiveblackhole。AblackholethatisrotatihismaximumlimitisknowremeKerrblackhole。ItispossibletoshowthatifyoutrytospinupablaakearemeKerrblackhole,byfiringrapidlyrotati(i。e。givingitastir)therifugalfortthematterfromeveheeventhorizon。

&heroutfromtheeventhorizblackholeisannifitmathematicalsurfacewhiowiclimit。Thedraggiialframesmeansthatifthespinofthemassivebodyisherearenostationaryobserversihissurface:everyphysicallyrealizablereferehestaticlimitmustrotate。Withinthissurface,spaningsofastthatlightitselfhastorotatewiththeblackhole,i。e。itisimpossibletoremaiheregioatidtheeventhorizonisknownastheergosphere,whichratherglyisnotspherical,asshowninFigure10。Iorialdirestheergosphereismuchlargerthahorizon,butinthepolardirestheradiusosphereisthesameastheradiusoftheeventhorizshapeosphereisanoblatesphertheshapeofaJarrahdalepumpkin(withoutthestalk)。Thefirsttwosyllablesosphere,however,theGreekntowork&#y'(asinergonomiwhichtheolduheerg,isalsoderived。Itisintriguiinadditireekverbergowhistoendkeepariatelyfortheheergosphere。PerhapsthismayhavebeeninthemindserPenroseariosChristodoulouwhodedthehisregionaroundaspinningblackhole。Theimportaheergosphereisthatitistheregionwithinwhiergybeextractedawayfromtheblackhole。

10。ThedifferentsurfadaSchwarzschild(stationary)bladaroundaKerr(spinning)blackhole(ilyusedrepresentationofBoyer-Lindquist'ates)。

&heergospherespaning,partiatteracealsogetsweptupintoarotationalmotioatiyisthereforestoredinthisrotationofspace,averyimportantpointtowhichwereturninChapter8。

Whiteholesandwormholes

&eiioivityareparticularlyridallowmaialternativeversionsofcurvedspacetime。Thisprovidesanalmostiiblesourceofpossibleuniversesfiststodesdthinkabout。Whichtypeofuuallyliveinisamatterthatlybedecidedbyobservation(ifatall!)。Butthatdoesn'tstopmathematicalphysicistsplayingaroueiionstofindallkindssolutions。

&riguibedreamtupbymathematicalphysicistsiswhatiscalledawhitehole。Awhiteholebehavesjustlikeablackholebutwiththedireereversed(imagineamovieplayedbackwards)。Iterbeiisspewedout。Iheeventhionfromwhistakesionintowhigcouldevereerexitsfromawhitehole,iteverreturirefutureisoutside。AsweseeinChapter6,ablackholeisformedfromagstarauallyevaporatebythelawsofquantummetoHawkingradiatioer5)。Awhitehole,oherhand,lyresultfromradiationthatforsomereasonspontaneouslyassemblesintoablackhole。ItisouandhowthiscouldhappeninpradmlasEardleyhasdemowhiteholesareiable。

&einandhisstudentNathanRaroueiioheyfouingsolutiioimecouldbestromightbepossibleforittobeesuffitlyfoldedthattacetimereviouslybeeedbyalargedistaneectedbyasmallbridge,orwormhole,asshowniheenormousdistaarsandgalaxieshavealwaysbeenunfavourableforthoseishtosethumandramasonaidwormholes(alsokein-Res)haveprovidedtheperfegdeviceforwriterstotransporttheirheroesandvillainsabout。Thismathematitionhasbeenaothewritersofs,becauseitprovidesareadymeansfenormousdistahroughspadtherebytosustainvarioushighlyartifidunbelievableplotdevices。Yetagain,wehaveiowormholesactuallyexistinourUniverse。Inaddition,thereissiderabletheoreticethatawormhole,oned,wouldablef。Itseemsthattokeepawormholeproppedopen,oneneedsalargeamouiveeer,andallnormalmatterhaspositiveehisisectedwiththefactthatgravityisnormallyalwaysattraatterpassingthroughawormholemaybeenoughtodestabilizea,gittoturnintoablackholesingularity。

11。Awormholegtwootherwiseseparateregioime。

Ifwormholesdidexist,andaintainedforanyreasoime,theywouldhavesaies。Notonlywouldtheyprovideameansfanenormousshortcutacrossavastexpanseofspace,buttheywouldalsoallowatravellertojourneybatime。Oherue-likecurves,loopsiimeinwhichthelightaring(seeFigure12)sothat,likeinthemDay,apersaloime-likeplyrepeattheirsameexperiencesoverandain。

Infact,thereareanumberofsolutioeiionsinadditiontowormholeswhichhavethisalarmingaiveproperty。In1949,themathematiKurtG?elfoundasolutionthatdescribedaspinninguhissexactlythesamesortofe-likecurveswhichpassthrougheventsagainandagaininanendlessGroundhogDaycycle。(Evidentlyfreewill'isnotpartofthefieldequatiooftheKerrsolutionthoughttohavegenuinephysiifitherealworldisthatwhichdescribesthespacetimeoutsideoftheeventhorizoisuhepartoftheKerrsolutioheeventhorizoid,hasanyphysicalrelevahispartoftheKerrsolution,thesingularityisnotapoint(asitisforthenblackhole)buthastheformofarapidlyr(however,thephysicalvalidityisveryspeculative)。Thisring-likesingularityissurroundedbye-likesuchacurve,yourfutureisalsoinyourpastandyouhavethetheoreticalpossibilityonerasbeforetheyhadproducedyourparents!Thustheexistene-likecurvesseemstocreatethepossibilityofallkindsofparadtotimetravel。Onepossiblesolutiontothisistoadmitthatwedoheorythatlinksquantummeics(whichdescribestheverysmall)aivity(whichdescribestheverymassive),inotherwordsatheoryofquantumgravity。Wedon'tknowthephysielymassivebutverysmallobjects。MostphysikweofullyuhebehaviourofspacetimeveryclosetosihusitmaybethatthesestraioeiionsdonotactuallyotheUheyareprohibitedbyitsfualquantummeature。Quasmay,forexample,destabilizewormholes。StephenHawkiobethedhascalledthispriheologyProtejecture'。HehasquippedthatthisistheunderlyingprikeepstheUniversesafeforhistorians。

12。Ae-likeloop,onwhichyourfuturebeesyourpast。

Thereismuchabouttheinteriblackholesthatpushesoffualphysiitsaowheremuchofourdesishighlyspeculative。Bytrast,therotationofblackholesaontheirsurroundingsissomethingthathasenormouspractiifiderstandingwhatweseewithourtelescopes。Thusourosiderihappenstomatterwhenitfallsintoablackhole。

已完结热门小说推荐

最新标签