&herkindsofquantumlightthatprovidedifferentsortsofes。Recallthatlightisossoftheeleagicfield。Alaserbeammostnearlymimicsthisidealbehaviour。Yetevenithassome‘heamplitude。Thatis,eaeasurethefieldamplitude,yougetadifferehesituatioFigure36a,whieuyaboutthefieldateat,orphase,ofitsos。Thereisaparticulartypeofquantumlight—called‘squeezedlight’—forwhioisevarieswiththepointinthecycleofthefield,asshowniisbiggeratsomephasesthaurnsoutthatsuchafieldisposedofonlypairsofphotons。Ifyoumeasuretheons,youwillonlyeverfindanevehequantuminterferehesepairsistheinofthephase-depeudenoise。
&ainthingsyoudowithsuchastate。Imagiyouwaomakeameasurementofthephaseofthewave。(Recallthatthatiswhatyoudoier,andthephaseshiftissomethihelightbeambyayou’dliketomeasure,suchasthepresenceofaparticularmolecule。)Thephasebedeterminedmuchmorepreciselyatpointsiioheflusofthefieldaresmallest。Infact,theflusinthesqueezedlightfieldaresmalleratsomephasesthananyclassicalfield,sothatphasesenssuchafieldwillbemorepresensclassicalfields。Infacttheywillbreakthestandardquantumlimit。
Thisisacostlyapproasi,soitisohereisaclearadvaobehad—forihedeteofgravitywavesbymeanseoptiterferometers,suchastheGEO600projeearHanermany。Byusi,thisidetectphaseshiftsthatdtoarelativepathlengthgeofthelightequivalenttothesizeofanatomparedtothedistaheEarthtotheSun。
36。Squeezedlighta。hasreduoiseiudeatpointsinitsosparedthtb。
Quaa
Thirangerwhenweorethaumlightbeam。Photowinedinsuchawaythatitisimpossibletoascribeapropertytoeitherofthemindividually—forexample,acolour,positioion,orpulseshape。Thisgoeswellbeyondthefuioicleduality。Itgestheverynotionthatintheclassicalworlditispossibletoassignrealvaluesofpropertiestophysitities(e。g。ibeams,sayfrequendtimeofarrival,orH-andV-polarization)—inawaythatberevealedbyalocalmeasurementinaself-tfashiohatthisotbedonefhtbeamspreparediates,andbeprove,isoriumphsoffuithe20thtury。
&hisproperty,itispossibletousequantumopticstoexplorethefamousjectureofEinstein,BorisPodolsky,andNathanRosengwhetheraquantummeicaldesofasystemofpartibesideredplete,requiringnootherinformatioermihingaboutthesystem。JohnBelldisthe1960sameanstoquantifysuchaquestioobuildauallytesthishypothesisbegaheseareknowncolloquiallyas‘Belltests’,aagworkusespairsofphotons,eachofwhichiscorrelatedwiththeother。Itisthehesecorrelationsthatissodifferentforquantumpartiforclassies。It’sworthexplthisinabitmoredepthiafullerserahisqua。
&ionsbefoundiuation。siderforihefollowingsimplegame。Adealertakestwopacksofewithgreenbadtheotherwithbluebacks。Thedealerpieeadgivesooyouaoyourpartner。Eachofyoulooksatyourcard。Theyalwayshavedifferenttheback,ofcourse,buttheymayhavethesamecolour(redorblathefront。Infact,you’dexpectthistooccurhalfthetime,sinceeachofyouwouldexpedividuallytogeteitherredorblackrobability(halfoftheeachdeckarebladhalfred)。
Ifyouandyourparthateverytimeyoubothgotblack,you’dsaythatthecardswere‘correlated’。Thisisabacorrelationasyoue。Infact,ifyoubothgotthesameorethaime,you’dalsobeabletoclaimthecardswerecorrelated,thoughclearlythecorrelationswouldbe‘weaker’thainstahecorrelations,youcoulddetermihedealerwasg,sinightassumeshe’dstartwithtwoi,pletedecks。
Wemakeananalogyofthiskindofcorrelationforphotonsusingpolarizationinsteadofsuitforthecards。Thatis,ahorizontallypolarizedphotoermeda‘red’photoicallypolarizedphotona‘blae。Thenifasourceprodustwoatatime,asdescribedabove,yousaythatitproducescorrelatedphotoalrodusrescribedpolarizatioiehorizontal,orbothhorizontal。Thistypeofed‘classiceithasapleteanalogytothesituationwithclassicalobjectslikeplayingcards。
Thereisafeatureofcorrelationsthathasanintrinsitummeicalaspect。Let’ssaytherearetwopossiblestatesinwhichthephotonpairbeprepared—thefirstH-polarizedandthesedV-polarizedorviceversa。Intheclassicalworldthesetwosituationsfortwoparticlesaremutuallyexclusive:eitherHVorVHispossible,eachrobabilityofone-half。But,justasthesionasuperpositionHandV,sothepair:HVandVH,shownihisturnsouttobeamugercorrelationthanispossiblewithanyclassicalpartidistaisthemostenigmaticpropertyofquantumphysidhasextraordinaryces。
Thesearerevealedbymeas。Insuchatest,youhavetootonlythepossibilityofcorrelationsintheHandVpolarizatioicle,butalsothoseinthediagonal(D)andanti-diagonal(A)polarizations,eatedhalfwaybetweealaical。(Diagonallypht,forexample,isshownii-diagonalpolarizatiorightaheDdire。)Theanalogywiththecardsisthatyoulookatthefrontofthedobserveeitherred(equivalenttoH)orblack(equivalenttoV)suits。OryoucouldlookatthebadseegreetoD)orblue(equivalenttoA)。
37。Alightseingpolarizatioons。
Aquantumgame
Nowimagineacardgameinwhichthedealereitherpadgivesooeachplayer。Thatmeansthateachplayerwillhaveacardthatcouldbeeitherred(R)orblathefront(F)ahergreen(g)orblue(b)ontheback(B)。Thedealerchoosestohandoutsuchawaythatifoneplayerlooksatthefrontofhisdtheotherthebackofhers(F,B),thentheyheresult(R,b)。Similarlyifthefirstplayerlooksatthebackofhisdtheotherthefrontofhers(B,F),thentheyheoute(b,R)。However,whehlookatthefrontoftheircards(F,F)theysometimessee(R,R)。Fromthis,youwouldcludelogicallythatinsuchacase,hadtheylookedatthefrontoftheircards(B,B)theywouldhaveseen(g,g)。That’swhatenforobviouslyclassigslikecards。
38。Tableoftheprobabilitiesofpossibleoutesforaquantumcardgame。
Butinfayoutakephotons(orotherparticles)thatarequaedanddosuexperimeurnoutthatensisthatwhentheplayersmakemeasurementsofthepolarizationsusing,forthefirstplayer,ahorizontallyorientedpolarizer,and,forthesedplayer,adiagonallypolarizedphoton(orviceversa),theyheresults(V=0,D=1)and(D=1,V=0)。Likewise,whehmeasureusingdiagoedpolarizers,theysometimesgettheresult(D=1,D=1)。Thereforeyouwouldlogicludethatwhehephotonsusingahorizontallyorientedpolarizer,theywouldsometimesgettheresult(H=1,H=1)。But,whehisexperiment,theyhisoute!ThetableofpossibleresultsofsutumcardgameareshowninFigure38。Suchexperimentsdhavebeen,doneusingphotonpairs。It’snotfi。
Localpropertiesofthings
Sowhatisgoingon?Thisisthefuallyweirdthingaboutquantumphysics:theofthequantumcardgameisthatthephotonsothavepredetermiheirpolarizatioheyarepreparedatthesource。Itisasifthecardsothavebeeesuitsfromadeckecifiedcard-backcoesagainstallintuitionaboutcards:theysurelyhavedefiiesofaspecifithefrontofeadaspecificthebaatteroreventhedealerknowswhatthesevaluesareordoubtthatthecardsactuallyhavethesepropertieswheous。Aainlydoahemgesthoseproperties。Butquaellsusthatweotassigncolourstothecardsapriori。
Itisthemeasurementsthatgivedefiheoutes。Wethemeasurementssimplyrevealpredetermiiesofthephotons,whiknowntotheplayers。Itisactuallythatyouotassigepolarizationstotheindividualphotoheyareproducedbythesoursuchawayastogivetheoutesthatareactuallyseen。Ifyoutrytodeviseawayofdealingcardsthatgivessucharesult,you’llfindthatitisimpossible。Thecardswouldohavethepossibilitythattheybesimultaneouslyiionsofredandblackreeicularways。Justsothephotons—itisnetobeiionsofHandVinawaythatgivesveryspecifictypesofcorrelations。Itisthistypeofcorrelationthatistermed‘quaa’。
&aisaveryweirdcept。Itisnotpossibletofindawaytothinkaboutitintermsofoneverydayobjects—astheplayingcardexamplewasioshow。Yeteisalsoveryon。Itappearsinmanythiumsineverydays:iioronsinmolecules,givioboomsmakingupthemolecule,oreveivelysmallatomsthemselves,aswellasexoticmaterialslikesuperductors。
Surprisiaurnsouttohaveteplis。You’dhardlythinkthatsuardabstractideacouldpossiblyhaveanyappli,butitdoes。Iteofinformatiapproachesthatotbereplicatedbysendingclassicalwavesbadforth。Iheveryideathatallinformatisystemsareatbottombuiltofsomethithedesignprihesemaesmustreflederlyingphysicsofthetparts—usuallyclassicalphysics。Thishasledtotheuandingthatbasingputing,unieasurementonquantummeicsprovidesueologiesthatsurpassthoseeioninunimaginableways:uniswhuarahelawsofersthatsolve‘unputable’problems;imagirevealaheyarenotevenlookingat。
Lightplaysanimportantpartiingsuchsystems。Theinfrastructureofopticalfibreworks,forinstanbeusedtodistributerandom‘quantumkeys’(randsof0sand1s)pletelysecurelybetweentwoparties,whitheoenessages。Suetworksalsobeusedtoall-stumprocessors,eventuallybeingadistributedquantumputer。Ihasbeenshoriispossibletobuildaquantumputerpletelyoutoflight,thoughitisextremelygtodoso。bieologiesholdsthepromiseiureofaqua,aradicallydifferentwaytounidproatioeologywetlyuse,andallenabledbylight。