千米小说网

千米小说网>黑洞的引力比光速更快吗 > Chapter 2 Navigating through spacetime(第1页)

Chapter 2 Navigating through spacetime(第1页)

Chapter2Navigatingthroughspacetime

&icsistheexquisitelyperfeguageneededfhowthetheoryofrelativityappliestothephysiiverseandallofspadthatdesirahatoearblaathematicaldes,whilepowerfula,evensoethingnandflahosewithouttheappropriateteiiivewords,howevereloquent,lacktherigourandpowerofamathematicalequationandbeimpredlimiting。Picturesh(itissaid)worthathousandwords,otonlyausefulisebutaveryhelpfulwaytovisualizewhatisgoingon。Forthisreason,itiswellworthspendingalittleefforttouandaparticulartypeofpicture,calledaspacetimediagram。Thiswillhelpiaureofspacetimearoundblackholes。

&imediagrams

&ooninFigure3sholespacetimediagram。Followingtraditioime-like'axisistheoisvertithepageandthespace-like'axisisdrawnperpendiculartothis。Ofcourse,wereallyneedfouraxestodescribespacetimebecausetherearethreespace-likeaxes(usuallydenotedx,y,andz)aime-likeaxis。Hoillsufficeforourpurpose(andofutuallyperpendicularaxesareimpossibletodraw!)。Wherethesetwoaxesiiscalledthein,andthismayberegardedasthepointofhereandnow'fortheobserverwhohasstructedtheirspacetimediagram。Aaheerashutter,occursatapartieaparticularlospace。Sustaisrepresentedbyadotoimediagram,appropriatetothetimeandspatialloquestiowodotsinFigure3,atiallyseparated(theydonotoccuratthesamepointonthespaceaxis)buttheyaresimultaheidenticalateoimeaxis)。Youagisdtothesimultaerpressesoftwophotographerswhoarestaafromothesamespectacle。Ifpoievents,whatdolinesiimediagramrepresent?Alinesimplyshoathofahroughspacetime。Asweliveourlives,wejhspadthepathweleavebehindus(somewhatasaseningtrailofslimebehindit)isalineiime,ahisiscalledaworldline。Ifyoustayathomeallday,yourworldliicalpaththroughspacetime(withspaate=22Aue',forexample)。Youmoveforwardiarefixediheotherhandyoumadealongjourney,yourworldlisoverbecauseyourdistaime,beoveinspaceaswellastime。

3。Asimplespacetimediagram。

Forexample,lookattheworldlineshownihelinewhichispartvertifurtherupbeesslanting。Thisdstotheworldliherentity,whichisstationaryforthetimeihevertitoftheline。Abeacamerabelongihephotographers,leftonachair(sothatitsworldliicalbecauseitspositionisn'tg),beforeitwasstolenandheiallogesuously)。Wherethisliisspatialloisgwithtime。Theslopeofthisliellsyouabouttherateofgeofdistaime,whiohespeed。Inthiscasethisisthespeedatwhichthethiefiswhiskingawaythestolehefasterthethiefismakingoffwiththeotherwordsthemroundheisgihelessvertidthemoreslantingthispartofthelihereisofcoursearobustupperlimittothespeedatwhichthethiefoffwithhisillegallygottengainsandthis,asdisChapter1,isthespeedoflight。Thetrajeoflightwouldberepresentedbyamaximallyslantingline(oediimediagramsasbeiothetimeaxisbyusieduhinggofasterthanthatspeed,noworldliagreateraimeaxisthanthis。

Worldlinesoimediagramhavingthismaximallyslantingangle,dingtothismaximalspeed,thespeedoflight,giverisetoanimportacalledalighte。Theideaofthisisverysimple:youlyhaveaheUhefuturebysomepriordthatcausalsequepropagatefasterthanthespeedoflight。Thereforeyoursphereofinfluence&#htnowisediedrangeofspaamelythatpartwhichiswithina45-degreeahepositivetimeaxisasshowninFigure4。Moreover,youlyhavebeeninfluencedbyacausalofeventsthatatedfasterthanthespeedoflight。Thereforeohina45-degreeahebackwardstimeaxisfluenodraacetimediagramwithtwospace-likeaxesaime-likeaxis,therianglesinFigure4beedthesearewhatwemeanbylightes,asshownihelightFigure5deliesregionsofspawhiobserver(deemedtobelocatedatthein,theirhereandnow')principlereach(orhavereathepast)withouthavingtoiheicspeedlimitandtravellihespeedoflight。Theregiohepositive(future)timeaxisisknowurelightewhilethetredoimeaxis(i。e。pasttimes)isknoastlighte。

4。Asimplelight。

ThustheassassinationofJulius44BCispartofyourpast,becausethereisaceivablekbetweeandyou。(Ifyouhadtolearnaboutitatschool,thatdemoheexistenceofak!)BecauselightfromtheAndromedaGalaxyreachatelesEarth,ittooispartofyourpast。Hhttakes6milliettous,soitisthe

5。Aspacetimediagramshowieofaparticularobserver。

AndromedaGalaxyof6milliothatispartofyourpastandsitshte。TheAndromedaGalaxyoftoday,oreventheAndromedaGalaxyof44BC,isoutsideyhttshappeningohernoworevenba44Botinfluenceyhtnowbeykwouldhavehadtotravelfasterthanthespeedoflight。

&hreespacetimediagramsthatwehaveseeninthischaptersofarhavetheiraxeslabelledastimea,professionalswouldn'tnormallyincludeaxislabelsoreventheaxesiimediagrams。Thisisn'tsimplythatitissoroutiimegoesupandspacegoesacrossthatprofessionalastrophysicistsgetsloppy(thoughthat'snotanunknowitisbecausetheexactpositionsiimeotbeagreeduponbyallobservers。Intheworldofspecialrelativity,thenotionofsimultaybreaksdowwoeveobesimultaneousforoneobserverdoesn'tatallmeanthattheyaresimultaneousforotherobservers。

Thusthetwophotographerspressiersoftheircameras‘simultaneously'willaravellingiveryfastrelativetothecamerassees。Thatobserverwilldedueraclicksubstaheother。ThetwopointsinFigure3whichIdrewatthesameverticalheight(sinceIclaimedtheeventsoccurredatthesametime)earatdiffereicalpositioimediagramoftherapidlytravelliein'srelativityinsistsherdiagramisjustasvalidasmihepointsoimediagramdependonanobserver'spoiheirframeofrefere'sthereasthem?

Touhis,itishelpfultofotheworldlineofamovingpartidsodraacetimediagraminarticlemhspacetime,takingitslightewithit(thistriwithinthee)。iheparticle'spath(i。e。itsworldline)alwaysstayswithieasitottravelfasterthanthespeedoflight。

&ein'sSpecialTheoryofRelativity,whichisasubsetofhisGeaiedsetofphysicalsituatioceptualframeworkbeyondSpecialRelativityishetextofspacetimewhichisexpanding,thepre-emiexampleofwhichistheexpandihistext,themaionofcausalityissuovefasterthanthespeedoflightwithrespecttoyourlocalbitofspace。

Howdoobjeo?

Althoughphotonshavenomass,itturnsoutthattheyarestillinfluencedbygravity。Itisbestnottothinkofthisasduetoaforce,butratherthatthisesaboutbecauseofthecurvatureofspacetime。Aphotonisusuallythoughttotravelinastraightline,egetthenotionofalightray'。Hhacurvedspacetimeitwillfolloathknownasageodesic。

6。Aspacetimediagramofapartigalongitsworldliisalwaysedwithinitsfuturelighte。

&sEarth-basedotations,ageodesiegeodesy,i。e。measurihelandofourpla'ssurfaimportadesgthenatureofspacetimethroughouttheUniverse。Ifspaotcurved(meairelytwitheverydaygeometrythatwemayhavelearsEueofhissuccessors),thenageodesicwouldbethestraightlih'thatalightraywouldtravel。Buttheshortestdistawopoints,whichistheroutethatalightraywants'totake,isknowermnullgeodesic'。Iheshortestdistawopointsisn'twhatwethinkht,butgehtlinesincurvedspaces'。Astraightlinealsobecharacterizedasthepathyoufollowbykeepingmovingiion。Anexampleofhowgeometryisseriouslydifferentonacurvedsurfaglinesoflongitudeowoadjaesoflongitude(aralleltooheequator)willmeetatapointatthepole,asshowninFigure7。However,inflatspaceparallellineswillmeetonlyatinfinity(asperEuclid'slastaxiom)。

Actually,wherespacetimeisplebecauseofthepresenass,thatcurvatureismahepaththatalightrayor(amentaldeviceusedbyphysicists)atestparticle'freelyabletomovewithnoinfluenyexternalforovealowoevesshardedastwopointsin4-Dspacetime,eaotedi,x,y,z)。

7。Linesoflongitudeonasphereareparallelattheequator,aapointatthepoles。

Arulecalledametrictellsushowdrulersmeasuretheseparatiosiimeahebasisfoutproblemsiry。AverysimpleexampleofametricisPythagoras'theorem,whichtellsushowtoputethedistawopointsthatlieihesolutioein'sfieldequationstellushowtocalculatethemetricofspacetimewheributionofmatteriskhisteodesicsfortherealUniverse。Forexample,opiecesofobservationalevideneralRelativitywasthebendinghtbytheSun,measuredduringasolareclipse(agoodtimetoexamipositionsofstarsclosetotheSun'sdiscbecauselightfromthediscisblockedoutbytheMoon,anopportunityseizeduponbySirArthurEddingtonin1919)。TheSun'smasscurvesspacetime。Thustheshortestpath(thegeodesiadistantstartoatelesEarthisraightliisbentroundbytheSun'sgravitationalfield,asshowninFigure8。

Thebendinghtdemospaceiscurved,butEinstein'sGeellsusitisactuallyspacetimethatiscurved。Therefhtexpectthatmassalsohasseeffee。IheEarth'sgravitationalfieldissuffiakeEarth-boundclockstickabitslowerthantheywoulddoindeepspace,althoughtheeffectissmall(roughlyoinabillion)butmeasurable。Thegravitatioshorizonofablauger。Thus,evecaseofanon-spinningblaerulyclosetotheblaparedtohowitrunsatahugedistaheblackhole。Thisisarealeffeddoesnotdependoimeismeasured(forexamplebyanatomicclitalwatch)。Itfollowsdirethecurvatureofspaducedbythemasswhichtipsthelightestowardsthemass。Figure9ihege。

8。AmasssuchastheSuion,orcurvature,iime。

Blackholesprofouheorientatioes。Asaparticleapproachesablackhole,itsfuturelightetiltsmoreaowardstheblackhole,sothattheblaesmoreaofitsiure。Wheiclecrossestheeventhorizon,allofitspossiblefuturetrajediheblackhole。Justwithihorizoetiltingissogreatthatonesidebeesparallelwiththeeventhorizoureliesehihorizoheblackholeisnotpossible。Figure9alsoillustratesthispoint:itisessentiallyarepresentationoflocalspacetimediagrams',becausetheassemblyoflightesallowsyoutouheloditionsexperieestparticlelocatedatdifferentpositions。Inthisfigure,timeihepageandsothisdiagramalsogivesasenseofhowablasandgrowsduetoinfallingmatter。

9。Diagramofthespacetimesurroundingablackholeshowiurelightesforobjetheeventhorizoheeventhorizon。

JustasforthedarkstarsofMidLaplacedisChapter1whichcouldhavesustaiemsinorbitaroundthemmuchlikeourSolarSystem,soitisthatweonlyknowthatablackholeissgravitationalpull。Thismightleadyoutothinkthattheocharacterizesablackholeisitsmass。Iherornotablackhhasadramaticeffeitsproperties,andIwillexplainhowthisesaboutinChapter3。

已完结热门小说推荐

最新标签