2。Anillustrationofaplaaryorbit。Theshadedregions,markedAandB,areofequalarea,iftheyaresweptoutbytheplaime。
·Thesquareofthetimetakenforaplaopleteoisproportionaltothecubeofthedistawofurthestpointsonthatorbit(themajoraxisoftheellipse)。
&iesdesthesethreelawsareallillustratedihtheexoftheorbitalperiod)。ThegoodthingaboutKepler'slawswasthattheyseemedtoapplytoallks,eventhoughatthetimetheyhadnoknownbasisinanyphysicaltheory。Theyweresimplyseentobeagoodfittothedata。Kepler'slaws,andinhisPrincipiaMathematiexplanationofhowtheycouldbederivedfromhislawsofmotionandfromhisuheravitatioiohegreatsuccessstoriesofphysics。Empiricallaws,derivedfromg-edgeobservatios,wereexplaihefirsttimeintermsofsimplemathematicalequatioonhadshownthatthesamelawsthatdescribethemotionofaballfiredonthesurfaceoftheEarthcouldalsobeusedtodescribethemotiosthemselves。Thiswasthebeginningofmuchofphysicsaswekno>
&ein’stheravity
&haeritspubliewton'stheravitylantedbyAlbertEinstein's。Ifon'stheoryleaheein'swasbeautifulandtrulyuniversal。Eijustgetheequatioon'stheory,hepulleduptheveryfoundationsuponwhichitrested。Einsteihing。
Aswithmuchressthathappensinphysistein'stheoryrimarilybytheincyofexistioheoryofhowgravityandmotioon'sideaswerenotpatiblewiththethehtthatJamesClerkMaxedinthemiddleofthe19thtury。Maxwell'sedthateveryoheUniverseshouldmeasurethespeedoflighttohavethesamevalue:justunder300milliorespersed。Thismightnotsoundterriblyprofound,untilyoutakeafewmomentstosiderwhatitmeans。
&isthat,agtoon'smeics,ifIfireabulletforwardsat1,000milesperhourwhileseatedonatrainmovingat100milesperhour,thehesideofthetrackwillseethatbulletmovingat1,100milesperhour。Iermswesaythatthevelocityofthebulletayofthetrainaddlinearly。NowsiderthatIturnonatorch,whilestillseatedfagforwardsorain。FrommyseatedpositionIwillseethelightfratefhthetraihespeedoflight(i。e。atabout300milliorespersesideragaigmefromthesideofthetraintrack。Ifyoulisteon,youmightexpectthispersohelighttravelatthe300milliorespersed,plus100milesperhour(thespeedofthetrain)。ButagtoMaxwellthisisnotehatthepersonatthesideofthetrackseesthelightpropagateatthesamespeedasthepersohatis,Maxwell’sequationsimplythatvelocitiesdonotaddlinearly。
&radijustdescribedisaprofoundone。Ifweareuoagreeonhowtoaddvelocities,theousephysicstocalculatethemotioall。Itossibleforbothonaobecorrect。Atleastobewrong。Alesserstistmighthavetriedtore-writeeitheron’sorMaxwell’stheories,butthiswasnot>
&eireatedbothon’sandMaxiththeutmostrespect。Hereizedtheirgreatstrengths,aosolvethetradiatrulyingeniousway。Eihesizedthatifthespeedoflightwasthesameforeveryoimeabeuniversalstead,hereasoned,eausthavetheirotoftime,andtheirotofspace。AgtoEinsteiheory,aclockcarriedbyapersorainisseeahetrack,totickslowerthanaclocktheycarrythemselves。Likewise,thepersoraiheclockofthepersonstahetracktotickslowerthanhisorherown。
Thisresultinitiallysoundsodd,butthat’sonlybecausewe’vebeenprogrammedfromayouhinkoftimeasuniversal。WhatEinsteihatourchildhoftimeismistakeauniversalfoldieforeveryoimeisapersonalthing,anddependsoivemotiooothers。Likewise,spaotthefixedbackdropthatwethinkitis。Whatwethinkofasdistahelengthsofobjects,areactuallydepeonh。
&artlifirsttheyseemuling,asifthecrutcheswe'veusedtouheworldhavesuddenlybeenkickedaway。Butwedespair。Thereisavolviimethatsurvivesiheory,andthatmaintainsanobserver-iy。Thisiswhatisknoace-time。Insteadofosofuimeanduniversalspace,whatweareleftwithisalargerstructurethatehemboth。Aperso,likeyouorme,followsalihroughthisstruownasourworld-liimeismeasuredalongourworld-line,andwhilemyworld-libediferenttoyours,theybothexistiime(seeFigure3)。
So,itisthepromotioimetospace-timethatallowsustomakeon’smeisistentwithMaxwell’s。ThisrealizatioeiributionstosditisthebaeofwhatisnoecialTheoryofRelativity。Ithasawidevarietyofprofoundyofwhichhavebeenedexperimentally。Themostfamousoftheseisprobablytheequation:
3。Awoworld-liwiime。Theobserversmeetwherethelinescross。
whichtellsusthatmassandeelyected(afactthatbecamedevastatinglyapparentwiththeadventofnuclearons)。Othercesarethelouiclesappeartohavewhentheymovequidthefaothingevermht。
Itisthislastresult,togetherwiththeofspace-time,whisteintohistheaiusforthisdevelopmentarenttradidagain,itwasheorythatroblems。Thistime,however,itseemedthattherewasatradiwithEinstein’sownwork。Thiswasbeewton’sgravityactedbetweeahatis,iftheSuosuddenlyexpltoonweshouldfeelthegravitatiohisattheverysamemomentithappeeihisossible。First,hehadfoundoutthatnothinght。Sed,hehadshownthattherewasnosugasuime,sotheideaoftwothingshappeningsimultaneouslyiplaoseall(iftheyhappeaneouslyforoheywouldaneousforanyotherwhowasieofmotion)。So,on,somethingwaswrongandneededfixing。
&ein’ssolutiontothisproblemwasevenm。Hehypothesizedthatgravity,insteadofbeisimplypulledthingsthroughspace,wastheresultofthecurvatureofspace-time。Thefactthatmassiveobjectsardseachotherwasthen,agtoEiaresultofthoseobjectsfollowipathstheythecurvedspawhichtheyexisted。Theideawasthatmassandenergycausedspace-timetodthatthiscurvaturecausedthepathsoftheobjectsthatmhspacetoappeartobendtowardseachother。ThebeautyofthisideaisthatwenowoiyasaraforcethatexistsintheUhisure,theonlythingrespoheattraassivebodiesisspace-timeitself(whichhastobethereanyway)。ThisisthefualideabehiheoryofRelativity。
EvenmoreimpressiveisthatEinstein’sideaexplainedGalileo’sresultthatallobjectsfallatthesamerate。Recallthatiheorythisresultlaiall。Itlytakenasafadalawofgravitywasdevisedthatatiblewithit。Eioer。eihereisernalforcecalledgravity;themotioisjustaresultofthecurvatureofspace-time。Butalliime,soallobjectsmustfolloaths。Inotherwords,allobjectsmustfallatthesamerate,justasGalileohadobserved。
Theseideasesbeg,solet’sthinkaboutanexample。Imagihsoftwoobjectsthathaveingonthem。Inaflatspacethepathsofthesehtlines,asshowninFigure4。
Ifthespaceiscurved,however,thenthisisrue。siderthesimplestcurvedspace:thesurfaceofasphere。Theshortestpathbetointsonthesurfaceofasphereiscalledagreatcircle(theequatorisanexampleofagreattheglobe)。Iftwoobjectsfollowtwreatesphere,thentheywillinitiallymoveawayfromeachother,beforefinallyiheragain,asshownihisishowEinsteiyw。Heimagiwascurvaturethatohepathsofobjeg,andnotahatpullsthemlefthtastheymove。Thecurvatureofspace-timeisusuallymularthanthesurfaceofasphere,butthebasicideaisthesame。Asfarasthecesfestefestein'sheorywerefoundtolookverysimilartothelawthatonhadprescribed200yearsearlier。Thediferethislaithaandingofspadtime。Italsoeswiththeprediofavarietyofsmaller,moresubtle,efects(tobedisthefolloters)。
4。Twhtlines,indigthepathsthattwoparticlesmightfollowiftheytravelledthroughaflatspace,withoutaeringuponthem。
5。Twogreatcirdigthepathsthatparticlesmighttravelinasphericallycurvedspaoexterupohelinesarenolongerparallelforever,butmeetatapoint。
Thinknowaboutwhatallofthismeansinapracticalsituation。sideraskydiverjumpingoutofaheskydiverfallsfreely,uptotheefectsofairresistance。AgtoEiheskydiver’spathisthestraightestlinepossiblethroughthecurvedspace-timearouh。Fromtheskydiver’sperspectivethisseemsquitefpasther,theskydiverfeelsurbiall。Infact,ifitweren’tfortheairresistance,shewouldexperielesshesamewaythatanastronautdoesinorbit。TheohinktheskydiverisagisbecauseweareusedtousingthesurfaceoftheEarthasourframeofreference。Ifwefreeourselvesfromthis,thenwehavehinktheskydiverisagatall。
Nowsideryourselfontheground,lookingupatthefallingdaredevil。Normally,youriionofyourownmotioyouarestatiainthisisonlybecauseofourslavishregardtotheEarthasthearbiterofwhatisatrestandwhatismoving。Freeyourselffromthisprison,ahatyouare,infact,ag。Youfeelaforthesolesofyourfeetthatpushesyouupwards,iyouwouldifyouwereinaliftthatacceleratedupwardsveryquiEiurethereisweenyourexperieahandyourexperie。Inbothsituationsyouareagupwards。Iersituationitistheliftthatisresponsibleforyourac。Intheformer,itisthefactthattheEarthissolidthatpushesyhspace-time,knogyouofyourfree-falltrajectory。ThatthesurfaceoftheEarthaccelerateupointonitssurfadremainasolidobject,isbecauseitexistsiimeandnotinaflatspace。
Withthisperspectivethetruenatureofgravitybeesapparent。ThefreelyfallingskydiverisbroughttoEarthbecausethespace-timethroughwhichshefallsiscurved。Itiserugsherdownwards,butherownnaturalmhacurvedspatheotherhand,asapersonstandingontheground,thepressureyoufeelonthesolesofyourfeetisduetidityoftheEarthpushingyain,thereisernalforgyoutoEarth。Itisoaticfortherocksbelowyourfeetthatkeepthegrid,andthatpreventsywhatwouldotherwisebeyournaturalmotion(whichwouldalsobefreefall)。
So,ifwefreeourselvesfromdefiningourmotioothesurfaceoftheEarthwerealizethattheskydiverisihepersonwhostandsonthesurfaceoftheEarthisag。Justtheoppositeofwhatweusuallythink。GoingbacktoGalileo’sexperimentoowerofPisa,hyheobservedallofhisballstofallatthesamerate。ItwasheballsthatwereagawayfromGalileoatall,itwasGalileothatwasagawayfromtheballs!IfIleaveanumberofobjectsatrestatsomepositioninspadaccelerateawayfromthem,Ishouldallsurprisedthatthedistaweeheseobjecreasesatthesamerate。SoitiswithGalileoandhisballs。
Forsome,thebeautyiionisobvious。ForothersitisthefactthatitispossibletoprobeEiheoryexperimentallythatismostpelling。TheseexperimentsrangefromlookingforsmallperturbatiosoftheplahebendingoflightaroundtheSun,andmany,manymorebesides。Wewillexploretheseexgphehechaptersthatfollow。Butbearinmindthroughout:itisthecurvatureofspace-timethatisrespoall。