Chapter8Quantumlight
InChapter1,Iiheideathatlightcouldbestruedasastreamofparticles,hotons’forsoutthatthesearerealparticles,roduced,playedwith,measured,stored,andusedfthings。However,eventhoughphotonsareihesimplestexpressionoflight,makingindividualphotonsisnotsosimple。Mostlightseofadifferentkind,forwhiumberofphotonsisnotfixed。
Alightbulb,forinstance,producesastreamofphotonsthatsprayseverywhere。Ifyoulookedatthelightgoingiionfromthebulb,andtheashorttemporalseofthebeam—atimeslot,ifyoulike—theoephotonsinthatslot。Butifyourepeatedtheexperimeimes,you’dfindthattheonswasraimeslargeaimessmall。Theaverageonswouldbefixed,dependihebulb,butyou’dosaywithtyhohotonsyouwouldmeasureiagive’soeristicsof‘classicallight’—lightthatbedestirelyintermsof>
&isalsoofthiskind。Theaverageonsinapulsehtbelarge,butfiveualonswillbebiggerorsmallerthahespreadofphotonnumbersinapulseisapproximatelythesquarerootoftheaveragehattherelative‘ionintheonsineachpulseparedtothemeannumberoverallpulses—getssmallerthehighertheaverageons。
Thusalaserbeamhasintriyhissetsalimitoyofimagesyougetwithlaserillumiionsiedetegtheseparationoftwopointsinanimageisimprefactitisveryimpreciseforlow-iylight,wherethemeanphotonnumberissmall(sotheobjectishardtosee)aioninphotonnumberfromframetoframeislarge。Theonlywaytogetprecisemeasurementsister,thusiheonsillumi,aheresultsovermanylaserpulses。Therelativeiynoiseisreducedbythissignalaveragioabetter-resolvedimage。Thepreproportiontothesquarerootoftheohisiscalledthe‘standardquantumlimit’,sinoclassicallightbeambeatit。
Quantumlight,oherhand,allowsyoutoachievemuchbetterresultsinsignalaveragingforthesameaverageoumlighthavemuoisethananyclassicallight。Butfirst,youhavetobuildaquantumlightsource。Therearemanykindsofsuchasource,eachprodugadistinlight。Butwemightsider,tobecrete,aseheprimitivequa—aphoton。
Sions
Sohowakejustasingle,individualphoton?There’saverypracticalsveoFris1965。Hisideale。Takeasiomandputitiate(see
Chapter5foradisofhowtodothis)。Thenwaitforittodroptoitsgroudoes,itemitsjustoon,sine‘quantum’ybestorediom。Youtellwheomhasemittedthephotorethe‘kick’providedbythephotoum。Ifyoudeteoving,youdetermihatthesionisonitswayaioninwhichitisgoing。
Somemodernquantumlightsourcesoperateinasimilarwaytothis,onlytheycorraltheatombetweentwomirrors(anoptical‘cavity’similartothatofalaser),averyquicklysothatitemitspreferentiallyiiohecavityaxis。Thismakesareliablesourglephotons。Itisanespecially‘lownoise’sourcethephotoedwithstrictregularity。Ifyoulookedatagiveinsuchabeam,you’dbeabletopredictwithtyhohotonswouldbeinit—justoheiyisexallystable—itisa‘quiet’lightbeam,intrasttothe‘noisy’classie。
Theideaisalsousediumlightsourparticular,youstructaverysimplelightsicaleffects。Specifically,therearecrystalsthatephotonwithhigheobesplitintotwophotonswithly,eachabouthalfinalinputphoton。Theprobabilitythatthisfissiontakesplaceisrathersmall,formostmaterials。Butsionsareprodupairs,youeasa‘herald’,tosignalthepreseher(Figure34)。Suchlightsourcesaretheworkhorseofthefieldofquantumoptics,whichusesthequantummeicalfeaturesoflighttoexplorethefoundationsofquantumphysics,aswellastoenablenewkindsofinformationteologies。
Justasclassicaleleagicolarized,sos。Sowemightfiicallypolarized(V)photonorahorizontallypolarized(H)photon。Thesewouldbehavejustlikewaves,inthatifwemeasuredthepolarizatioopassedthroughapolarizerorientedhorizontally,thehattheH-photonalassedthroughaonnever。
34。A‘heralded’sionlightseingphotonsrandomly,butwithasignalthatindionehasbeenprepared。
What’sstrawestructadiagonallypolarizedphoton,osgwiththefieldat45degreestoboththehorizontalaical。Butifwenowtrytoseeifthephotohroughthehorizontalpolarizer,thenthereisanambiguity。Thephoto‘piece’oflight,so’tbedividedfurther。Howshoulditbehaveatthepolarizer?ensisthatitistrahaprobabilityofone-half,ahequalprobability(illustratedinFigure35)。
Ihatimpliesisthatifyoutrytheexperimentofputtingadiagonallypolarized(D)sionintoahorizontallyorientedpolarizeramilliohen500,000timesitwillgh。Arahingaboutquantummeicsisthatyouottellorialwhaten。ThisishephotonsideredsometimestobeH-polarizedaimesV-polarized。RatheritisbecausethephotonisbothHandV-polarized,simultaherandomouteasuremeon’spolarizationthereforerevealtheintrihatinhabitsthemostfualleveloftheuniverseasdescribedbyquantumphysics。
35。Adiagonallypolarizedphotoersapolarizer,asrandhoortheother。
Ofakeavirtueoutofyinsuchces。Youdopractigswithsionsthatareunimagihht。Forihispropertyofphotoogeerandomnumbers,bymeasurihephotonistransmitted(labellie,say,1)orreflected(labelled0)。Therahestringofzeroesandonesisiheunderlyingphysiotjustiureandgofdice,ehisreasonquantumraorsareanemergingbusiness—you’tfaketheraheyprovide。
Aseple:youmakeunislinksforwhichthesecurityisguarahelawsofphysics,ratherthanbytrustingyourtelessupplier。Thisisbeportaiesofphotons。First,youotdetetwoplace。Forthatreason,ifaneavesdrrabsthephotontocapturetheinformati,thenofcourseyoudohephoton。Soyoureation,ahatsomething’swrong。
Butiftheeavesdropperisclever,shewillseonthatshehopeswillfakethemessage。Butyoutellthatit’safake!Thereasonyouowthisisthatinquahereistellyaboutasiumparticle。
siderthefollowingsario。Youwanttosendasimplebinarymessage(0sahislink,sayaverticallypolarizedphotonfor0andadiagonallypolarizedphotonfor1。Iftheeavesdropper(usuallyknownasEve)measuresthephotoheaicallypolarized’,sheotbethatthephotonwasa0,sihediagonallypolarizedphotonwouldgiveherthesamealeasthalfthetime。Soshegetssomeinformation,buthing。
hesehemessage(allycalledAlice—you,thereceiver,areBob)sendsyouaphotoncodedas1。Let’ssayEvemeasuresthisiitatiosapositiveresult。Shemustchoosewhethertosendyouaverticallyonallypolarizedphotoegyistosendyouaverticallypolarizedphotohemostlikelysourceofherresult。hediagonalpolarization。IfyourphotonisfromEve,itwillgiveyresult50pere。IfitisfromAlice,youwillhewro。SobypariionofthereceivedmessagewithwhatAlit,youtellifEveistamperingwithyourline。
Hhtbeevencleverer。ShemaytrytocopythephotonfromAlieasuringit。Sheaketwofagyinal。Thenshemakeaverticalpolarizatioononedadiagonalpolarizatiohesedshewouldhavedetermihefullinformationaboutthephoton‘bit’thatAlityouwithouty。However,shewouldbethwarted。Aremarkablefeatureofquantummeicsisthatthereisnopossibilityofbuildingaaethatakeareplica,ore,ofasiiunknownquaissimplyforbiddenbythelawsofphysics。Becauseofthesetosedbyphysient’and‘nog’—itispossibletobuildaseunislinkthatsmitasecretstreamofrandombitsbetweenAlidyou。
&