Chapter4Duality
&wodifferentviewsoflight,asapartidasawave,bothsightaheyhaveeaabledbothandiuralworldaanddesigeologies。Yettheyappeartobevastlydifferentintheirofwhatlightactuallyis。Oheparticlemodelviewslightasalotity,abuhatmovesalongawell-defiory。Ohewavemhtasadiffuseeingthroughspaotothemotionofsolidthings。Howthesetwopicturespossiblyrefertothesamething?ThisdilemmawasreizedearlyonbyHuygensandhisporaries,butthetwoviewsremaiensioivedessoflight,uhtury。
WhenMaxwelldevelopedhistheoryicfields,hewasabletousethistoexplaiiesoflightaswavemotionofthosefields,aster3。ThistriumphappearedtotheexperimentsofThomasYoungandAugusteFresnel(desChapter3)byprovidiionoftheerferenddiffra,thatdidwithiiclemodel。Yettheceptoftrajeaiillremairaordinarilypowerfuloheanalysisanddesignofopticalsystems。Sothere’saruceofthesetwopictures—adualismhysics—thatrequiressomesideration。Howtheybereciled?
Lookingattrajectain
IhturytheFrenPierredeFermatproposedaningeniousformulatioionthatwasverydifferentfromthatofSSnell’slawdealswiththegeofdirehtataweentareheray,defiioninwhichitistravellingtowardstheihepointatwhichithitstheisdirealteredbyanamountproportioiooftherefradicesofthetwomaterials。Itisonlythelocalpropertiesoftherayahatareimportant。Snell’slaliesateataloory,asiftherayis‘feeling’itswayalong,adjustiioentersaerface。
&’swasradicallydifferehatoneshoulddefioryiartingandendingpoints,asshowninFigure21。Hesuggestedthatthequestiontoaskis:whatisthepaththatthelighttakestotraversethespathetwopoints?Heproposedthatitshouldtakethepaththatmiimeofflightbetweewopoints。ThatthisgivesthesameanswerasSnellisremarkableandprofou’s‘pritime’suggeststhatthelightsiderstheoverallpictureofthesituation,andthatthenotionofarayisoakesintoatboththeinitialandfinalpositionsaionsaswellaseverythihetrastwiththelocalmodelofaparticlereaediateeelling。
21。Fermat’sofalightrayasapathofleasttimegthestartahetrajectory。Therayiweentwoopticalmediainwhichlightmovesatdiferentspeeds。
ThisideabytheGermannaturalphilottfriedWilhelmvonLeibniz,ton’sporaryandantagonist。LeibnizressedbytheholisticpictureoftheprocessdescribedbyFermat,aof‘optimization’thatitimplied:arayexploresthewholeofspadpicksjustthatpaththatwillmiraweenthespecifiedbegins。Hedevelopedthemathematicaltoolsforanalysingthisidea—thecalculusofvariations—bywhichtheeffectssmallatrajectorywouldhaveootraversethemodifiedtrajectorycouldbecalculated。LeibnizreizedtheimportahatFermat’sprincipleprovided:themovementoflightfromooanotherdefiimal’trajectory。
&akenwasLeibnizbythisizatioedittoateleologiciple:thattheworlditself,inallitsaspects,wasoimaltrajectorybetointandafinishingpoiradiherentinsuchaposition,liedoutsideoftherealmofsce,ooaireinhisnoveldide,whereLeibniz’sideasareputihloss,whoinsistsdisastersbothnaturalandmahelessevidehisisthe‘bestofallpossibleworlds’。
&ingwavesandrays
&heless,Leibniz’smathematicalideasprovedtobeveryfruitful。TheybytherenownedIrishmathematiWilliamRowanHamiltohtury。Heshowedformallyhowtheideaofawavebealliedtothatofaofparticles。Wavesbedefiheirwavelength,amplitude,andphase(seeFigure15)。Particlesaredefiioionoftravel(seeFigure5),aionofparticlesbytheirdehehematagivenpositieofdireediainwhichthelightmovesarecharacterizedbytheirrefradices。Thisvaryacrossspaple,attheinterfaihereisasteptherefradexacrossthebouhet>
Hamiltoortantidlytherefradexspaparedwiththelengthofanopticalwave。Thatis,iftheiookplaascaleofclosetoawavelehewavecharacteroflightwasevident。Ifitvariedmoresmoothlyandveryslowlyiheparticlepictureprovidedaiohesimplerraypictureemergesfromthemoreplexioeredsituations。Theappearanceofhenomena,suchasdiffradinterference,othesizescalesofthewavelengthoflightauresinwhichitpropagatesaresimilar。Thusyouseediffrapatternsarisiheobjectthatthelighthitsisafewmidiameter,orhasaverysharpedge,suchasthedelicatestruabird’sfeather,orabutterflywing。Otherwise,asintheeraleoryprovidesasuffitdes,siiveindexisunifhouttheglassofthelensitself。
22。Hamilton’sideaofraysasgwavefronts-thusjoitionsoflight。
Further,HamiltoFermat’strajectoriesrelateddirectlytoapropertyofthewave—thewavefrohelotsatwhichthewavehasthesamephaseateatinspastanyouseetheripplesonthesurfaceofapoointoit,thecircularpatterhesewavefroheplathesurfacewheretheeaks’(hs)atagiveninstantoftime。Now,whatHamiltohatrayscouldbesideredasliihewavefrles,asshownihusgadjatwavefrontsbyawell-defiory。
Hamilton’s‘optialogy’
Thisremarkableresultsuggestedanotherprofoundilton’sso-called‘optialogy’。Whathehatthewell-knownformulatiohemotionandpositionofsolidbodiesofmatter—wasbasedorajectories。Theideathatthesemayalsobeiimal’hadbeensideredbyPierreLouisMaupertuisihtury。
&uishadformulatedawaytoevaluatetheoptimalvalueofaquantitycalledthe‘a’—essentiallythevelocityofthebodymultipliedbythedistamoves(asmass)—alorajectory。
&hattheainimalforanactualtrajectorybetweentwopoints,justasi’sargumentthatthetimetakenthtrayshouldbeminimal。Maupertuis’‘pria’isverysimilarioFermat’s‘pritime’。Indeed,LeonhardEuler,aSwissmathemati,showedhowtouseLeibniz’scalculustoderiveon’sfamousequationsofmotionfromMaupertuis’prihusEulerectedadesofatrajetermsofapartigitswaythroughitseooneinwhichthewholeofspathespecifiedstartingandfinishingpoihepath。
WhatHamiltondidwastofiioedthevariationsinasofasimpledesofthespeviroinwhioving。Aurnsouttohaveaverysimilarformtotheonehefoundfthetrajectoriesoflightrays(forwhiviroionisjusthowtherefradexgeswithpositioninthemedium)。Sothereisahintofalatentahetrajectoriesofsolidobjedafictivewavefront:perhapsallbodiesmighthavebothparticle-liketrajedroperties?Ioion,andhiseponymousfun,turnsouttobeveryimportantinthinkingabouttheepiandinglight—quantummeics。
Unsolvedpuzzles
Thiswasbyheonlyhiunityforsce。Aboutthistime,towardstheehtury,lightstillofferedafewpuzzlesthatwereunexplaiermsmodelsofitsproperties,evenwiththerethatHamiltonhadprovided。Twoofthemostimportantofthesewere:thecolourofhotobjegtheSun),andthecolourofdifferentatomsinaflame。
&hiedup,theygecolour。Takealumpofmetal。Asitgetshotterafirstglowsred,thehenwhite。Whydoesthishappen?Thisquestionstumpedmastistsofthetime,ingMaxwellhimself。TheproblemwasthatMaxwell’stheht,liedtothisproblem,ihecetbluerahetemperatureihoutalimit,eventuallymovingouteofhumanvisioraviolet—beyiorum。Butthisdoesnothappeninpractice。