Chapter2Navigatingthroughspacetime
&icsistheexquisitelyperfeguageneededfhowthetheoryofrelativityappliestothephysiiverseandallofspadthatdesirahatoearblaathematicaldes,whilepowerfula,evensoethingnandflahosewithouttheappropriateteiiivewords,howevereloquent,lacktherigourandpowerofamathematicalequationandbeimpredlimiting。Picturesh(itissaid)worthathousandwords,otonlyausefulisebutaveryhelpfulwaytovisualizewhatisgoingon。Forthisreason,itiswellworthspendingalittleefforttouandaparticulartypeofpicture,calledaspacetimediagram。Thiswillhelpiaureofspacetimearoundblackholes。
&imediagrams
&ooninFigure3sholespacetimediagram。Followingtraditioime-like'axisistheoisvertithepageandthespace-like'axisisdrawnperpendiculartothis。Ofcourse,wereallyneedfouraxestodescribespacetimebecausetherearethreespace-likeaxes(usuallydenotedx,y,andz)aime-likeaxis。Hoillsufficeforourpurpose(andofutuallyperpendicularaxesareimpossibletodraw!)。Wherethesetwoaxesiiscalledthein,andthismayberegardedasthepointofhereandnow'fortheobserverwhohasstructedtheirspacetimediagram。Aaheerashutter,occursatapartieaparticularlospace。Sustaisrepresentedbyadotoimediagram,appropriatetothetimeandspatialloquestiowodotsinFigure3,atiallyseparated(theydonotoccuratthesamepointonthespaceaxis)buttheyaresimultaheidenticalateoimeaxis)。Youagisdtothesimultaerpressesoftwophotographerswhoarestaafromothesamespectacle。Ifpoievents,whatdolinesiimediagramrepresent?Alinesimplyshoathofahroughspacetime。Asweliveourlives,wejhspadthepathweleavebehindus(somewhatasaseningtrailofslimebehindit)isalineiime,ahisiscalledaworldline。Ifyoustayathomeallday,yourworldliicalpaththroughspacetime(withspaate=22Aue',forexample)。Youmoveforwardiarefixediheotherhandyoumadealongjourney,yourworldlisoverbecauseyourdistaime,beoveinspaceaswellastime。
3。Asimplespacetimediagram。
Forexample,lookattheworldlineshownihelinewhichispartvertifurtherupbeesslanting。Thisdstotheworldliherentity,whichisstationaryforthetimeihevertitoftheline。Abeacamerabelongihephotographers,leftonachair(sothatitsworldliicalbecauseitspositionisn'tg),beforeitwasstolenandheiallogesuously)。Wherethisliisspatialloisgwithtime。Theslopeofthisliellsyouabouttherateofgeofdistaime,whiohespeed。Inthiscasethisisthespeedatwhichthethiefiswhiskingawaythestolehefasterthethiefismakingoffwiththeotherwordsthemroundheisgihelessvertidthemoreslantingthispartofthelihereisofcoursearobustupperlimittothespeedatwhichthethiefoffwithhisillegallygottengainsandthis,asdisChapter1,isthespeedoflight。Thetrajeoflightwouldberepresentedbyamaximallyslantingline(oediimediagramsasbeiothetimeaxisbyusieduhinggofasterthanthatspeed,noworldliagreateraimeaxisthanthis。
Worldlinesoimediagramhavingthismaximallyslantingangle,dingtothismaximalspeed,thespeedoflight,giverisetoanimportacalledalighte。Theideaofthisisverysimple:youlyhaveaheUhefuturebysomepriordthatcausalsequepropagatefasterthanthespeedoflight。Thereforeyoursphereofinfluencehtnowisediedrangeofspaamelythatpartwhichiswithina45-degreeahepositivetimeaxisasshowninFigure4。Moreover,youlyhavebeeninfluencedbyacausalofeventsthatatedfasterthanthespeedoflight。Thereforeohina45-degreeahebackwardstimeaxisfluenodraacetimediagramwithtwospace-likeaxesaime-likeaxis,therianglesinFigure4beedthesearewhatwemeanbylightes,asshownihelightFigure5deliesregionsofspawhiobserver(deemedtobelocatedatthein,theirhereandnow')principlereach(orhavereathepast)withouthavingtoiheicspeedlimitandtravellihespeedoflight。Theregiohepositive(future)timeaxisisknowurelightewhilethetredoimeaxis(i。e。pasttimes)isknoastlighte。
4。Asimplelight。
ThustheassassinationofJulius44BCispartofyourpast,becausethereisaceivablekbetweeandyou。(Ifyouhadtolearnaboutitatschool,thatdemoheexistenceofak!)BecauselightfromtheAndromedaGalaxyreachatelesEarth,ittooispartofyourpast。Hhttakes6milliettous,soitisthe
5。Aspacetimediagramshowieofaparticularobserver。
AndromedaGalaxyof6milliothatispartofyourpastandsitshte。TheAndromedaGalaxyoftoday,oreventheAndromedaGalaxyof44BC,isoutsideyhttshappeningohernoworevenba44Botinfluenceyhtnowbeykwouldhavehadtotravelfasterthanthespeedoflight。
&hreespacetimediagramsthatwehaveseeninthischaptersofarhavetheiraxeslabelledastimea,professionalswouldn'tnormallyincludeaxislabelsoreventheaxesiimediagrams。Thisisn'tsimplythatitissoroutiimegoesupandspacegoesacrossthatprofessionalastrophysicistsgetsloppy(thoughthat'snotanunknowitisbecausetheexactpositionsiimeotbeagreeduponbyallobservers。Intheworldofspecialrelativity,thenotionofsimultaybreaksdowwoeveobesimultaneousforoneobserverdoesn'tatallmeanthattheyaresimultaneousforotherobservers。
Thusthetwophotographerspressiersoftheircameras‘simultaneously'willaravellingiveryfastrelativetothecamerassees。Thatobserverwilldedueraclicksubstaheother。ThetwopointsinFigure3whichIdrewatthesameverticalheight(sinceIclaimedtheeventsoccurredatthesametime)earatdiffereicalpositioimediagramoftherapidlytravelliein'srelativityinsistsherdiagramisjustasvalidasmihepointsoimediagramdependonanobserver'spoiheirframeofrefere'sthereasthem?
Touhis,itishelpfultofotheworldlineofamovingpartidsodraacetimediagraminarticlemhspacetime,takingitslightewithit(thistriwithinthee)。iheparticle'spath(i。e。itsworldline)alwaysstayswithieasitottravelfasterthanthespeedoflight。
&ein'sSpecialTheoryofRelativity,whichisasubsetofhisGeaiedsetofphysicalsituatioceptualframeworkbeyondSpecialRelativityishetextofspacetimewhichisexpanding,thepre-emiexampleofwhichistheexpandihistext,themaionofcausalityissuovefasterthanthespeedoflightwithrespecttoyourlocalbitofspace。
Howdoobjeo?
Althoughphotonshavenomass,itturnsoutthattheyarestillinfluencedbygravity。Itisbestnottothinkofthisasduetoaforce,butratherthatthisesaboutbecauseofthecurvatureofspacetime。Aphotonisusuallythoughttotravelinastraightline,egetthenotionofalightray'。Hhacurvedspacetimeitwillfolloathknownasageodesic。
6。Aspacetimediagramofapartigalongitsworldliisalwaysedwithinitsfuturelighte。
&sEarth-basedotations,ageodesiegeodesy,i。e。measurihelandofourpla'ssurfaimportadesgthenatureofspacetimethroughouttheUniverse。Ifspaotcurved(meairelytwitheverydaygeometrythatwemayhavelearsEueofhissuccessors),thenageodesicwouldbethestraightlih'thatalightraywouldtravel。Buttheshortestdistawopoints,whichistheroutethatalightraywants'totake,isknowermnullgeodesic'。Iheshortestdistawopointsisn'twhatwethinkht,butgehtlinesincurvedspaces'。Astraightlinealsobecharacterizedasthepathyoufollowbykeepingmovingiion。Anexampleofhowgeometryisseriouslydifferentonacurvedsurfaglinesoflongitudeowoadjaesoflongitude(aralleltooheequator)willmeetatapointatthepole,asshowninFigure7。However,inflatspaceparallellineswillmeetonlyatinfinity(asperEuclid'slastaxiom)。
Actually,wherespacetimeisplebecauseofthepresenass,thatcurvatureismahepaththatalightrayor(amentaldeviceusedbyphysicists)atestparticle'freelyabletomovewithnoinfluenyexternalforovealowoevesshardedastwopointsin4-Dspacetime,eaotedi,x,y,z)。
7。Linesoflongitudeonasphereareparallelattheequator,aapointatthepoles。
Arulecalledametrictellsushowdrulersmeasuretheseparatiosiimeahebasisfoutproblemsiry。AverysimpleexampleofametricisPythagoras'theorem,whichtellsushowtoputethedistawopointsthatlieihesolutioein'sfieldequationstellushowtocalculatethemetricofspacetimewheributionofmatteriskhisteodesicsfortherealUniverse。Forexample,opiecesofobservationalevideneralRelativitywasthebendinghtbytheSun,measuredduringasolareclipse(agoodtimetoexamipositionsofstarsclosetotheSun'sdiscbecauselightfromthediscisblockedoutbytheMoon,anopportunityseizeduponbySirArthurEddingtonin1919)。TheSun'smasscurvesspacetime。Thustheshortestpath(thegeodesiadistantstartoatelesEarthisraightliisbentroundbytheSun'sgravitationalfield,asshowninFigure8。
Thebendinghtdemospaceiscurved,butEinstein'sGeellsusitisactuallyspacetimethatiscurved。Therefhtexpectthatmassalsohasseeffee。IheEarth'sgravitationalfieldissuffiakeEarth-boundclockstickabitslowerthantheywoulddoindeepspace,althoughtheeffectissmall(roughlyoinabillion)butmeasurable。Thegravitatioshorizonofablauger。Thus,evecaseofanon-spinningblaerulyclosetotheblaparedtohowitrunsatahugedistaheblackhole。Thisisarealeffeddoesnotdependoimeismeasured(forexamplebyanatomicclitalwatch)。Itfollowsdirethecurvatureofspaducedbythemasswhichtipsthelightestowardsthemass。Figure9ihege。
8。AmasssuchastheSuion,orcurvature,iime。
Blackholesprofouheorientatioes。Asaparticleapproachesablackhole,itsfuturelightetiltsmoreaowardstheblackhole,sothattheblaesmoreaofitsiure。Wheiclecrossestheeventhorizon,allofitspossiblefuturetrajediheblackhole。Justwithihorizoetiltingissogreatthatonesidebeesparallelwiththeeventhorizoureliesehihorizoheblackholeisnotpossible。Figure9alsoillustratesthispoint:itisessentiallyarepresentationoflocalspacetimediagrams',becausetheassemblyoflightesallowsyoutouheloditionsexperieestparticlelocatedatdifferentpositions。Inthisfigure,timeihepageandsothisdiagramalsogivesasenseofhowablasandgrowsduetoinfallingmatter。
9。Diagramofthespacetimesurroundingablackholeshowiurelightesforobjetheeventhorizoheeventhorizon。
JustasforthedarkstarsofMidLaplacedisChapter1whichcouldhavesustaiemsinorbitaroundthemmuchlikeourSolarSystem,soitisthatweonlyknowthatablackholeissgravitationalpull。Thismightleadyoutothinkthattheocharacterizesablackholeisitsmass。Iherornotablackhhasadramaticeffeitsproperties,andIwillexplainhowthisesaboutinChapter3。