第一章早晨1。1起床
● 闹钟
“哔哔,哔哔,哔哔……”闹钟无情地履行着它每天的职责。现在是早上六点半,该起床了。你下意识地伸出手去关掉这烦人的闹铃声。轻轻一按,又重回安静的早晨。如果能在**多躺一会儿就好了,可惜你得起床啦。
床头柜上那个像恶魔一样可怕的闹钟是姨妈送给你的,多年来它一直默默地履行着自己的使命。它总是沉默,直到那设定的时刻到来,那时,它会竭尽全力叫你起床。执行这讨厌的任务,它不需要其他什么,只要每隔一段时间更换电池就行。这其实是一个石英闹钟,坦白地说,你应该从来没想过石英和闹钟计时有什么关系,更不用说在大早上的这个点儿去想这个问题。你也几乎不知道石英是什么,但也许多了解一下这个讨厌的装置的工作原理,会让你不那么讨厌它。
● 石英晶体
从化学角度来看,石英被称为硅石,因为它的主要成分是二氧化硅(SiO2)。它是整个地壳中储量非常丰富的一种物质(约占地壳体积的12%)。“石英(quarz)”这个名称似乎源于一个翻译错误。有一篇拉丁文写道,有些岩石在德国用术语“querzerz”(字面意思是“穿过岩石的矿物”)来表示。1550年,威尼斯印刷商米歇尔·特拉梅佐诺(MicheleTramezzino)在翻译该文本时,将“querzerz”誊写成了“quarz”。这个词随后也传到了其他语言中。
二氧化硅是许多沉积岩的主要成分,其中最为大家熟知的肯定就是由微小的二氧化硅晶体组成的沙子了。二氧化硅也可以形成一种尺寸比较大的晶体,也就是石英。石英有多种类型,根据所含杂质的不同,会呈现出不同的颜色。其中珠宝店里比较有名,受人喜欢的一类石英是紫水晶,又名“阿梅蒂斯塔(Ametista)”。紫水晶这个名字源于希腊神话,而这个故事也非常值得我们去了解。
阿梅蒂斯塔是一个仙女,也就是希腊神话中的一个小神灵。这些小神灵主要是一些年轻的少女,她们是宙斯(Zeus)或乌拉诺斯(Urano)的女儿。阿梅蒂斯塔的美丽使完全处于醉酒状态下的酒神巴克斯(Bacco)失去了理智。为了得到她,他开始追求阿梅蒂斯塔。为了躲避酒神的追求,阿梅蒂斯塔向狩猎女神、处女的守护神狄安娜(Diana)求助。女神见阿梅蒂斯塔陷入危险,就将她变成了一块水晶石。之后酒神将一杯葡萄酒倒在上面,水晶石便呈现出具有代表性的紫罗兰色。根据这个传说,从此之后紫水晶就有了让人饮酒不醉的功效。在一些富裕的古罗马人中,流行在喝葡萄酒之前,将一颗紫水晶浸入酒杯中,而后再饮用。但很少有人能维持这种奢侈的习惯,紫水晶因此也就成了权力的象征。天主教的主教使用紫水晶戒指也是顺应了这一传统。
● 压电效应
能让石英晶体带动指针运动,使你讨厌的闹钟工作起来的是它的压电特性(piezoelectricity)。很多材料都具有压电性,可以产生压电效应(piezoelectriceffect)。其原理就是:如果晶体受到的外力引起晶体机械变形,它便会产生电位差,称为正压电效应(directpiezoelectriceffect);反之向晶体外部施加电压,便会引起晶体机械变形,称为逆压电效应(iriceffect)或李普曼效应(Lippma)。
正压电效应是1880年左右由法国物理学家居里兄弟,也就是皮埃尔·居里(PierreCurie,1859—1906)和哥哥雅克·居里(Paul-JacquesCurie,1856—1941)两人发现的。皮埃尔·居里是著名的玛丽·斯可罗多夫斯卡(MariaSk?odowska,居里夫人,1867—1934)的丈夫,而雅克·居里也是一位杰出的化学家和矿物学家。逆压电效应则由法国物理学家加布里埃尔·李普曼(GabrielLippmann,1845—1921)首次从理论上进行了预测,并在几年后由居里兄弟通过实验证实。
晶体要表现出压电的特性,就必须不具有对称中心。这意味着它的组成粒子(原子、分子或离子)必须在所谓的晶胞(unitcell),也就是晶体的最小单位内不对称排列,从其重复排列中形成完整的晶体。这种不对称性意味着晶体的变形会引起电荷的不同分布,从而产生电极化。研究表明,从变形的发生到产生电位差的瞬间,平均只需要1×10-8秒,也就是一亿分之一秒的时间。
石英钟表,包括你的闹钟,就是利用了逆压电效应这一原理。由电池供电的电路会产生交流电压,对石英晶体施加该电压,晶体就会产生相同频率的机械振动,这是一种强制振**机制。当电压的频率足以在晶体中产生驻波时,振幅就会达到最大。在这些条件下,我们说晶体处于共振状态,其相对的频率取决于晶体的几何性质。而这个频率值是非常稳定的,因此可以非常精确地测量时间的推移。通常,在常见的石英钟表中,我们运用的并不是基本共振频率,而是一种谐波,其频率值一般设定为32768赫兹。这就意味着石英在一秒钟内振动了32768次,或者换句话说,在晶体振**这么多次数之后,正好就经过了一秒钟。在32768次振**后,设计电路会向一个微小的机芯发出电脉冲信号,推动相应的指针前进一秒(闹钟也是此原理)。如果钟表上有日历的话,则由一个齿轮系统来调节分轮、时轮和拨日轮的转动。
如果是数字闹钟的话,电脉冲会被发送至显示器,从而使显示器上的时间前进一秒。复杂的电路不仅推动着分、时、日的前进,还调节着现在数字手表所具备的所有其他功能(秒表、计时器、时区、闹钟等)。
闹钟和数字手表现在已经非常普遍,我们已经习惯了看它们有数字的显示屏。但你有没有想过显示屏是什么原理呢?显示屏有下面的两种类型。
● LED显示器
在老式的数字手表中,数字通常显示为明亮的红色或绿色。这就是所谓的LED(LightEmittingDiode),即发光二极管。二极管是一种特殊的电路元件,由两个半导体构成的PN结组成。半导体是指导电性能介于金属(优良的导电体)与绝缘体之间的材料。对于金属来说,其电导率会随着温度的升高而减小,而半导体则相反。典型的半导体材料有硅(Si)和锗(Ge)。
半导体的特性归因于其特殊的电子结构。由瑞士物理学家费利克斯·布洛赫(FelixBloch,1905—1983)提出的一个固体物理学理论——能带理论表明,区分金属、半导体和绝缘体的是一个特殊的参数,即能隙(energygap)[14]。能隙表示所谓的价带(valend)和导带(band)之间的能量差。价带和导带代表了由固体结构内电子占据的能级(energylevel)组成的能带(energyband)。金属的能隙为零(当价带和导带相邻时)甚至为负(当价带和导带交叠时)。这使得电子可以自由地从价带进入导带,这也是其导电性好的原因。相反,绝缘体的能隙很大,电子不能从价带跃迁至导带。半导体的能隙介于金属和绝缘体之间,这就说明半导体的电导率虽然不为零,但绝对是低于金属的(图1)。
图1 绝缘体、半导体和金属的电子能带示意图
A电子伏特(eV)为能量单位,1eV=1。60×10-19J(焦耳)。——编者注
对于半导体,如果温度升高,电子就会获得更多的能量,这就增加了部分电子跃迁至导带的可能性,从而增加物体的电导率。另外,半导体还有一个重要的特点:如果在它们的晶体结构中掺入少量其他元素作为杂质,半导体的导电性能就会大大增加。这个过程在技术上称为掺杂(doping)。如果作为杂质引入的外来元素相比于原来的半导体有一个多余的电子(如硅类半导体中掺入磷元素),则称为N型掺杂(N-typedoping),因为半导体中引入了带负电荷的电子。反之,如果引入的外来元素缺少一个电子(比如掺入硼元素),则称为P型掺杂(P-typedoping)。这是因为缺少带负电荷的电子,就相当于引入了正电荷。
这个由于缺少电子而表现出正电性的空位被称为电子空穴(elehole)。如果把一个P型半导体和一个N型半导体连接起来,就会得到一个PN结(PNjun),即二极管。这种结具有单向导电性,也就是只允许电流向一个方向流动。而电流通常是指电荷的定向移动。在固体导体中,移动的电荷一般是电子。在PN结中,电子只能从N型区流向P型区,而不能反过来。如果将PN结二极管插入交流电路(以一定频率周期性改变电流方向的电路)中,只有当电流方向“正确”时,电流才会流通,反之则不会通过。最终,交流电流将转化为脉冲电流(pulset)。如果再加上其他器件(如电容器),就可以获得与直流电(电流的方向始终不变)非常相似的电流。因此,二极管主要应用于电流整流器(rectifier)中,将交流电转换成直流电。我们日常普遍使用的各种设备(手机、平板电脑、笔记本等)的充电器就是由整流器和变压器(改变电压)组合而成的。
LED是一种特殊的PN结二极管,由一层薄薄的半导体材料组成。在LED中,电流的通过决定了导带中的电子与价带中的空穴的结合。这种结合在可见光范围内以电磁辐射的形式释放能量。因此,LED是一种将电能转化为光能的电-光换能器。1962年,美国电气工程师和发明家尼克·何伦亚克(NiyakJr,出生于1928年)发明了第一种发光二极管,为半导体技术做出了很大贡献。
在老式的数字手表中(也包括在老式计算器和其他设备中),数字的显示由一个七段式显示器来完成,显示器中的发光二极管通常会发出红光或绿光,从而显示出数字。
LED发出的光(与辐射频率有关)的颜色取决于电子与空穴复合时释放出的能量的不同,这种不同又取决于构成半导体的材料。最常用的LED材料有砷化镓(GaAs)、磷化镓(GaP)、磷砷化镓(GaAsP)、碳化硅(SiC)和铟镓氮(GaInN)。
非常有意思的是,LED也可以反过来工作。如果被适当频率的光辐射,LED其实可以像光电模块一样,吸收辐射并产生电能。这种功能可应用于不同的设备中,如距离传感器、颜色传感器、触觉传感器等。
● 液晶显示器