千米小说网

千米小说网>牛津 数学 > Chapter 8 Numbers but not as we know them(第1页)

Chapter 8 Numbers but not as we know them(第1页)

Chapter8hem

Realandbers

&ruplexnumbersismuchsimplerandgoesmuoothlytharuoftherealhefirststageinprodugtherealsisdevelopmeionals,atwhitlainwhatismeantbyafra。Afra,suchas23isjustapairofintegers,whichwerepresentinthisfamiliarbutpeheideaoffraalpartsisnotdiffiderstand,althoughthediakesrealefforttthewayyourteachersexplaininpassingthatsuchfrasas23,46,69etc。are‘equal’–theyarenotthesamenumberpairsbuttheydorepresentequalslicesofpie。Thisisnothardtoacceptbutitdoesdrawourattentiohatarationalnumberisiyaofequivalentfras,eachrepresentedbyapairofihissoundsintimidatiprefernottothinktoomuchaboutthis,fortheprospeanipulatingiionsofpairshtleaveusfeelihereisonesavianyfrahasauniquereducedrepresentatioheoraoraree,whibegotbyganyonfathefrawithwhichyinallybegaheless,oniliarwiththepropertiesoffradtherulesfthem,nothingsheventhoughihat,asyoudoyoursums,youareimpliipulatingiionsofintegerpairs。

Itistemptingthallthisfrettingaboutparticularequationsandsimplydeclarethatwealreadyknowwhattherealheyaretheofallpossibledecimalexpansions,bothpositiveaheseareveryfamiliar,inpractiowhowtousethem,andsowefeelonsafegrouilweasksomeverybasiaiureofhatyouadd,subtract,multiply,a,forexample,howareyousupposedtomultiplytwoinfinitendecimals?Wedependondecimalsbeihsothatyou‘startfrht-hathereisnosugwithaninfinitedecimalexpansion。Ite,butitisplicatedbothintheoryandinpraumbersystemwhereyletoexplainholydoesisfactory。

Youmayfiioionsraisedaboryoumaygrowimpatientwithalltheiioobemakingtroubleforourselveswhenpreviouslyallwassmoothsailing。Thereisaseriouspoihematisappreciatethat,whehematicalobjetroduced,itimportanttostructthemfromkicalobjects,theway,foriioofaspairsers。Inthisway,wemaycarefullybuilduptherulesthatgovereemandkafoundatiowillebatuslater。Forexample,therapiddevelopmentofcalculus,whichwasbornoutofthestudyofmotioospectacularresults,suchasprediovemes。Houlationofihingsasiftheywerefiimesprovidedamazinginsightsaimespatentingyourmathematicalsystemsonafirmfoundation,wehowtotellthedifferenpractice,mathematisoftenindulgein‘formal’manipulatiooseeifsheoffieisworthyofattebeprorouslybygoingbacktobasidbyihathavebeeablishedearlier。

ThisiswhyJuliusDedekind(1831–1916)tookthetroubleofformallystrugtherealembasedoisoasDedekindcutsofthereallihemati,however,tosuccessfullydealwiththedilemmacausedbytheexisteionalnumberswasEudoxusofidus(fl380BC)whoseTheoryofProportionsallowedArchimedestousetheso-calledMethodofExhaustiorouslyderiveresultsonareasandvolumesofcurvedshapesbeforetheadventofcale1,900yearslater。

Thefihenumberjigsaw–theimaginaryunit

13。Additionofbersbyaddiedlis

&iberspresentsitselfveryheplexplahinkofthebera+biasbeihepoint(a,b)intheateplawobersz=(a,b)andw=(c,d),wesimplyaddtheirfirstariestiveusz+w=(a+c,b+d)。Ifwemakeuseofthesymboli,wehaveforexample(2+i)+(1+3i)=3+4i。

Thisdstowhatiskoradditionintheplaedliors)areaddedtogether,toptotail(seeFigure13)。Webeginatthein,whichhasatesof(0,0),andinthisexamplewelaydownourfirstarrowfromtheretothepoint(2,1)。Toaddtheedby(1,3),wegotothepoint(2,1),anddrawanarroresentsmoving1unitrightialdire(thatisthedireoftherealaxis),and3unitsupiioical(theimaginaryaxis)。Weendupatthepointwithates(3,4)。Inmuchthesameway,weesubtraplexnumbersbysubtragtherealandimaginarypartssothat,forexample,(11+7i)-(2+5i)=9+2i。Thisbepicturedasstartingwiththevector(11,7),andsubtragthevector(2,5),tofinishatthepoint(9,2)。

Multipliisaer。Formallyitiseasytodo:wemultiplytwoberstogetherbymultiplyis,rememberingthati2=-1。AssumiributiveLawuestohold,whichisthealgebraicrulethatallowsustoexpasintheusualway,thenmultipliproceedsasfollows:

(a+bi)(c+di)=a(c+di)+bi(c+di)=

ac+adi+bci+bdi2=(ac-bd)+(ad+bc)i

Byusiherthanspeberswethesameway,fieofageneraldivisionofbersiheirrealandimaginarypartsaswehavedoneabeneralultipli。Hastheteiqueisuhereisnoproduorizetheresultingformula。

14。Thepositionofaberinpolarates

Furtherces

Thereareahostofappliplexheelemeheiweeangularandpolarrepresentatiooplayinasurprisingandadvantageousway。Foriandardexerciseforstudeionofimportahaturallybytakingarbitrarybersofunitmodulus(i。e。r=1),andgpbularandthenpolarates。Equatiwoformsoftheaherigoion。

&hesameinpives:

&ively,thepolarformforultiplibederivedusirigoriulas。Ihatwehavestatedhere,withoutproof,formultiplipolarformisusuallyfirstderivedfrularformbyusingtrigoriulas。

bersandmatrices

&usexaminesomecesoftherevelationthatmultiplibyirepresentsarotatiharightahetreoftheateplane。Ifz=x+iy,wehavethroughexpasaiplisthati(x+iy)=-y+ix,sothatthepoint(x,y)istakento(-y,x)uhisrotation;seeFigure15。Inthislibyiberegardedasonpoihisoperatiohespecialpropertythatforanytwopointszandwandanyrealnumbera,wehavei(z+)=a(iw)。Moreover,ifwemultiplyarealnumberabyaberx+iy,wegeta(x+iy)=ax+i(ay)。Intermsofpointsintheplexplahat(x,y)ismovedto(ax,ay),ortowriteitanotherway,a(x,y)=(ax,ay)。

已完结热门小说推荐

最新标签