Chapter7Toinfinityandbeyond!
Infinitywithininfinity
Itwasthegreat16th-turyItalianpolymathGalileoGalilei(1564–1642)whowasfirsttoalertustothefactthatthenatureofiionsisfuallydifferentfromfiniteones。Asalludedtoeofthisbook,thesizeofafiissmallerthanthatofasedsetifthemembersofthefirstbepairedoffwiththoseofjustaportionofthesed。However,isbytrastbemadetodinthiswaytosubsetsofthemselves(wherebythetermsubsetImeahiself)。Weneedgohesequeuralumbers1,2,3,4,···ioseethis。Itiseasytodesynumberofsubsetsofthisthatthemselvesforma,andsoareio-onedehefullset(seeFigure8):theoddnumbers,1,3,5,7,···,thesquarenumbers,1,4,9,16,···and,lessobviously,theprimenumbers,2,3,5,7,···,ahesecasestherespeeheevehehebersarealsoinfinite。
&Hotel
Thisratherextraordinaryhotel,whichisalwaysassociatedwithDavidHilbert(1862–1943),theleadihematiofhisday,servesttolifethestraheischieffeatureisthatithasinfinitelymanyrooms,numbered1,2,3,···,andboaststhatthereisalwaysroomatHilbert’sHotel。
8。Theevensandthesquarespairedwiththenaturalnumbers
&,however,itisinfactfull,whichistosayeadeveryroomisoccupiedbyaguestandmuayofthedeskoreerfrontsupdemandingaroom。AnuglyseisavoidedwhenthemaerveakestheclerkasidetoexplainhowtodealwiththesituatioofRoom1tomovetoRoom2sayshe,thatofRoom2tomoveintoRoom3,andsoon。Thatistosay,weissueaglobalrequestthattheerinRoomnshouldshiftintoRoomn+1,andthiswillleaveRoom1emptyfentleman!
Andsoyousee,thereisalwaysroomattheHilbertHotel。Buthowmu?
&evening,theclerkistedwithasimilarbutmsituation。Thistimeaspaceshipwith1729passengersarrives,alldemandingaroominthealreadyfullyoccupiedhotel。Theclerkhas,however,learnedhislessonfromthepreviousnightaoexteocopewiththisadditionalgroup。HetellsthepersoninRoom1togotoRoom1730,thatofRoom2toshifttoRoom1731,andsoon,issuingtheglobalrequestthattheerinRoomnshouldmoveintoRoomnumbern+1729。ThisleavesRhto1729freeforthenewarrivals,andhtlyproudofhimselffwiththisnewversionoflastnight’sproblemallbyhimself。
Thefinalnight,however,theclerkagaihesamesituation–afullhotel,butthistime,tohishorror,notjustafewextraersshowupbutaninfinitespacecoafinitelymanypassengers,oheumbers1,2,3。···。Theoverwhelmedclerktellsthecoachdriverthatthehotelisfullandthereisnoceivablewayofdealingwiththemall。Hemightbeabletosqueezeiwomore,anyfinitesurelynotinfinitelymaisplainlyimpossible!
Amighthaveeagaiimelyiionofthemanagerwho,beingwellversedinGalileo’slessonsos,informsthecoachdriverthatthereisall。ThereisalwaysroomatHilbert’sHotelforanyoneandeveryoakeshispanigdeskclerkasideforanotherlesson。Allwehis,hesays。Wetelltheo1toshiftintoRoom2,thatinRoom2toshifttoRoom4,thatinRoom3togotoRoom6,andsooheglobalinstruisthattheonshouldmoveintoRoom2n。Thiswillleavealltheoddnumberedroomsemptyforthepasseheinfinitespaceatall!
Themaohaveitallurol。However,evenhewouldbecaughtoutifaspaceshiptursomehowhadtheteologytohaveonepasseiinuumoftherealline。Onepersonforeverydeumberwouldtotallyoverruel,andweshallseewhyiion。
parisons
Allthismaybesurprisiimeyouthinkaboutit,butitisnotdifficulttoacceptthatthebehaviourofismaydifferisfromfihispropertyofhavingthesamesizeasossubsetsisthereforeapoiury,htor(1845–1918)wentmuchfurtheranotallisberegardedashavingequallymahisrevelatioediisnothardtoappreceyourattentionisdrawntoit。
torasksustothinkaboutthefollowing。SupposewehaveanyiLofnumbersa1,a2,···thoughtofasbeinggiveninde。ThenitispossibletowritedownanotherdoesnotappearahelistL:wesimplytakeatobedifferentfroma1iplaceafterthedet,differentfroma2inthesealplace,differentfroma3ihirddecimalpladsoon–inthisway,wemaybuildsureitisoahelist。ThisobservationlooksinnocuousbutithastheimmediatecethatitisabsolutelyimpossibleforthelistLtoallnumbers,becausethenumberawillbemissingfromL。Itfollowsthatthesetofallrealisalldecimalexpansions,otbewritteninalist,orinotherutio-onedehenaturalumbers,theihislineisknownastument,astheliesoutsidethesetLisstructedbyimaginingalistofthedecimaldisplaysofLasinFigure9anddefinihediagonalofthearray。
Thereissomesubtletyhere,fhtsuggestthatweeasilygetaroundthisdifficultybysimplyplagthemissihefrontofL。ThiseingMgtheannoyingnumbera。However,theunderlyigonealytor’sstruagaintointroduceafreshisheM。Weoftioaugmelistasbeforeaimes,buttor’spointremainsvalid:althoughgliststhatadditiowerepreviouslyoverlooked,thereeverbeonespecificlistthatseveryrealnumber。
9。beradiffersfromeathekthdecimalplace
&ionofallrealhereferiheofallpositiveihoughbothareisotbepairedofftogetherthewaytheevennumbersbepairedwiththelistofallumbers。Indeed,iflytumenttoaputativelistofallheio1,themissingnumberawillalsolieinthisraherefore,welikewisecludethatthiswillalsodefyeveryattemptatlistingitinfull。Imentionthisasweshallmakeuseofthatfactshortly。
tor’sresultisrehembythefactthatmasofnumbersbeputintoa,ingtheGreeks’euumbers。Alittleiyisionceacoupleoftricksarelearisnothardtoshowthatmasofnumbersaretable,whichisthetermweusetomeabelistedinthesamefashioiherwiseaistable。
Whatwehavealloenincasuallyaganydecimalexpansionistoopeowhatareknowraalhoseliebeyoarisethrougheugeometryandebrais。entshowsusthattraaland,inadditiobeinfinitelymanyofthem,foriftheyformedonlyafiheycouldbeplafrontofourlistofalgebraiumbers(thenoals),soyieldingalistingofallrealnumbers,knowisimpossible。Whatisstrikingisthatwehavediscoveredtheexisterahoutidentifyingasihem!Theirexistencelythroughpariaiioher。Thetraalsarethefillthehugevoidbetweenthemorefamiliaralgebraiumbersaionofalldecimalexpansions:toborrowanastrohetraalsarethedarkmatterofthenumberworld。
Inpassingfromtherationalstothereals,wearemovingfromoherofhigheralityasmathematisputit。Twosetshavethesamealityiftheirmembersbepairedoff,otheother。Whatbeshownusiumentisthatahasasmalleralitythaformedbytakingallofitssubsets。Thisisobviousforfiions:indeed,ilaiifwehaveasetofhereare2edinthisway。ButheisthesetSofallsubsetsoftheiuralnumbers,{1,2,3,···}?Thisquestionisnotialsointhemannerinwhichwearriveattheanswer,whichisthatSisiable。
Russell’sParadox
SupposetothetrarythatSwasitselftable,inwhichcasethesubsetsoftheumberscouldbelistedinsomeorderA1,A2,···。NowanarbitrarynumbernmayormaynotbeamemberofAussiderthesetAthatbersnsuishesetAn。NowAisasubsetoftheumbers(possiblytheemptysubset)aheaforesaidlistatsomepoiA=Ajsay。Anunaionnowarises:isjamemberofAj?Iftheahen,bytheverywayAisdefined,wecludethatjisnotamemberofA,butA=Aj,sothatisself-tradictory。Thealternativeisno,jisnotamemberofAj,inwhichcase,agaiiojisamemberofA=Aj,andoncemorewehavetraditradiisunavoidable,inalassumptiosoftheumberscouldbelistedinatablefashionmustbefalse。Ihisargumentworkstoshowthatthesetofallsubsetsofanytablebutiisuntable。
Thisparticularself-referentialstyleargumentwasirandRussell(1872–1970)inaslightlydiffereledtowhatisknownasRussell’sParadox。Russellappliedittothe‘setofallsetsthatarehemselves’,askingtheembarrassiiothatsetisamemberofitself。Again,‘yes’implies‘no’and‘no’implies‘yes’,fRusselltocludethatthissetotexist。
Inthe1890s,selfdisimplitradiingfromtheideaofthe‘setofallsets’。Indeed,Russellaowledgedthattheargumentofhisparadoxiredbytheworkoftor。Theupshotofallthis,however,isthatlyimagihematicalsetstroduymasoever,butsomerestriustbeplaaybespecified。SettheoristsandlogishavebeelingwiththecesofthiseversiisfactoryresolutionofthesedifficultiesisprovidedbythenowstandardZFCSetTheory(theZermelo-FraeheorywiththeAxiomofChoice)。
Thenumberlihemicroscope
10。Ratioeaionsonthenumberline