千米小说网

千米小说网>牛津数学英语 > Chapter 6 Below the waterline of the numbericeberg(第1页)

Chapter 6 Below the waterline of the numbericeberg(第1页)

Chapter6Belowthewaterlihenumbericeberg

Introdu

&ralportionofthenumberlinenear0

However,oatsofthe19thturywasthefullrealizatioruedomaioratheristwo-dimensional。Theplahebersisthenaturalarenaofdisuatics。Thishasbeenbroughthometomathematidstiststhroughproblemsolviocarryouttheiioosolvereal-worldproblems,manyofwhichseemtobeonlyaboutordinaryumbers,itbeesoexpandyournumberhorizoionastohowthisextradimensieswilletowardstheendofthisdbeexploredfurtherinChapter8。

Plusesandminuses

&egersisthenameappliedtothesetofallwholeiveive,ahisset,oftensymbolizedbytheletterZ,isthereforeihdires:

{···-4,-3,-2,-1,0,1,2,3,4,···}。

&egersareoftenpicturedaslyingatequallyspatsalongahorizontalnumberliheorderiheadditioweoknowiodoarithmeticwiththeintegersbesummarizedasfollows:

(a)toaddativeinteger,-m,wemovemspacestotheleftiion,aherightforsubtra;

(b)tomultiplyanintegerby-m,wemultiplytheintegerbym,andthengesign。

Inotherwords,thedireofadditionandsubtraegativeheoppositetothatofpositivenumbers,whilemultiplyinganumberby-1ssitssigive。Forexample,8+(-11)=-3,3×(-8)=-24,and(-1)×(-1)=1。

Youshouldroubledbythislastsum。First,itisreasomultiplyiivenumberbyapositiveoneyieldsaivea(a)issubjeterest(apositivemultipliergreaterthaeisgreaterdebt,thatistosayalargerivenumber。Weareallwellawareofthis。Thatmultipliofaiveherivenumbershouldhavetheoppositeoute,thatisapositiveresult,wouldthenappeart。Thefactthattheproductoftwoivenumbersispositivereadilybegivenformalproof。Theproofisbasedoioourexpaemoftheiosubsumetheihenaturalhattheaugmeemshoulduetoobeyallthenormalrulesofalgebra。Iooftwoivesfollowsfromthefayipliedbyzeroequalszero。(Thistooisnotanassumptionbutratherisalsoaceofthelawsofalgebra。)For>

-1×(-1+1)=-1×0=0;

&henmultiplyoutthebrackets,weseethatiheleft-handsideequalzero,(-1)×(-1)musttaketheoppositesignto(-1)×1=-1;inotherwords(-1)×(-1)=1。

Fradrationals

andsowerecyptiaion:

Applyingthiswithm=9,p=4,q=5immediatelygivesus

Thiskindoftrickisofteosimplifyahatinvolvesaingprople,siderthefollowier:

Bysquaring,andthensquaringagai-handsidebeesa4,whiletheexpressiogives:

&followsthe5isanothercopyoftheexpressiohata4=20asothata3=20or,ifyouprefer,aisthecuberootof20。WewillthisteiqueagaininChapter7wheroduceso-tiions。

&heclassoffrasprovideuswithallthenumberswecouldeverioheofallfras,togetherwiththeirhesetofnumbersknowionals,thatisallresultfromwholeheratiosbetweeheyareadequateforarithmetithatanysuminvolvingthefourbasicarithmeticoperationsofaddition,subtraultipliddivisioakeyououtsidetheworldofrationalnumbers。Ifywiththat,thissetofnumbersisallwerequire。However,weexplaiseberssuchasaabovearenotrational。

Irrationals

Argumentsalongtheselinesallowustoshowthatquitegenerally,whehesquareroot(orihecubeherroot)ofaheaawholenumber,isalwaysirrational,thusexplainingwhythedecimaldisplaysonyourcalevershpatterocalculatesucharoot。

Thisproblemremaiouclassicaltimes。Thatthecuberootof2liesoutsidetheraheeutoolswasoledin1837byPierreWantzel(1814–38),asitrequiresaprecisealgebraicdesofossibleusingtheclassicaltoolsioseethatthecuberootof2isanumberofafuallydifferedoesioshowingthatyouevermanufactureacuberootoutofsquarerootsandratiohatway,theimpossibilitysoundsmoreplausible。However,thatinnowaystitutesaproof。

Traals

Withintheclassofirratiohemysteriousfamilyoftraalhesearisethroughtheordinarycalsofarithmetidtheextraofroots。Forthepreitioroduentaryofalgebraiumbers,whicharethosethatsolvesomepolyionwithis:forexamplex5-3x+1=0issuequatioraalsaretheheon-algebraiumbers。

Itisnotatallclearthatthereareanysuumbers。However,theydoexistandtheyformaverysecretivesociety,withthoseinitnotreadilydivulgingtheirmembershipoftheple,thenumberπisarathisisnotafactthatitopewillbeexplaichapterwhehenatureofiisthat‘most’raal,irecise。

Anotherwayinwhichthemysteriousearisesisthroughthesumofthereciprocalsofthefactorials,andthisgivesawayofgetoahighdegreeofaccuracyasthisseriesvergesrapidlybecauseitstermsapproachzeroveryquideed:

&heimaginary

&fivechaptersofthisVeryShortIntroduainlywithpositiveintegers。Weemphasizedfactorizatioiesofintegers,whichledustoumbersthathaveorizations,rimes,asetthatoccupiesapivotalpositioography。Wealsolookedatparticulartypesofnumbers,suchastheMersenneprimes,whitimatelyectedwithperfeumbersandtooktimetointroduespecialclassesofiareimportantingaturallys。Throughoutallthis,thebackdropwasthesystemofintegers,whicharetheumbers,positive,ive,andzero。

Inthischapterwehavegoegers,firsttotheratioions,positiveaheionals,andwithintheclassofirrationalswehaveideraalheunderlyingsysteminwhichallthisistakihesystemoftherealnumbers,whibethoughtofastheofallpossibledecimalexpansions。Anypositiverealnumberberepreseheformr=n。a1a2···,wherenisaiveihedetisfollowedbyarailofdigits。Ifthistraileventuallyfallsintpattern,thenrisinfaalandwehaveshownhowtovertthisrepresentationintoanordinaryfra。Ifnot,thenrisirrational,sotherealnumberseiinctflavours,therationalaional。

Inourmathematiatioeherealnumbersasdingtoallthepointsalongthenumberlifromzero,thtforthepositivereals,afativereals。Thisleavesuswithasymmetricalpicturewiththeiverealnumbersbeingamirreofthepositivereals,andthissymmetryispreservedwhehadditionandsubtra–butnotwithmultiplicewepasstomultipli,thepositiveaivenumbersnoloatusasthenumber1isehapropertythatnoothernumberpossesses,foritisthemultiplicativeidehat1×r=r×1=rforanyrealipliby1fixesthepositionofainultipliby-1ssasmirreonthefarsideof0。Oiplitersthese,thefualdiffereheiveaivenumbersarerevealed。Inpartiegativenumberslacksquarerootswithintherealembecausethesquareofanyrealnumberisalwaysgreaterthaozero。

ThisfirststrueihturywhenItaliaislearnthowtosolvedfreepolyionsinafashiohatusedtosolvequadratis。Theethod,asitcametobeknown,wouldofteninvolvesquarerootsofhoughthesolutioiourobepositiveiagesfromthispoint,theuseofbers,whicharethoseoftheforma+bi,whereaandbareordinaryrealnumbers,wasshowntofacilitateavarietyofmathematicalcals。Forexample,ihturyEulerrevealedaedthestunniioneiπ=-1,whiotfailtosurpriseaheirfirstenter。

Aroundthebeginnihtury,thegeometriterpretationofbersaspointsintheateplaandardsystemofxy-ates),wasiedbyWessellandArgand,fromwhittheuseofthe‘imaginary’becameacceptedasnormalmathematitifyingtheberx+iywiththepointwithates(x,y)allowsexaminationofthebehaviourofbersihebehaviourofpointsintheplahisprovestobeveryilluminatiheoryofso-plexvariables,whosesubjectmatterisrepresentedbyfunplexherthanjustrealnumbers,flourishedspectathehandsofAugustinCauchy(1789–1857)。Itisnowaathematiderpinsmuchnaltheory,airefieldofX-raydiffraisbuiltonbers。Thesenumbershaveprovedtohaverealmeaning,ahesystemispleteinthateverypolyionhasitsfullentofsolutionswithiemofbers。Weshallreturersinthefinalchapter。Befthat,however,weshallierlookmorecloselyattheiureoftherealnumberline。

已完结热门小说推荐

最新标签