Chapter8hem
Realandbers
&ruplexnumbersismuchsimplerandgoesmuoothlytharuoftherealhefirststageinprodugtherealsisdevelopmeionals,atwhitlainwhatismeantbyafra。Afra,suchas23isjustapairofintegers,whichwerepresentinthisfamiliarbutpeheideaoffraalpartsisnotdiffiderstand,althoughthediakesrealefforttthewayyourteachersexplaininpassingthatsuchfrasas23,46,69etc。are‘equal’–theyarenotthesamenumberpairsbuttheydorepresentequalslicesofpie。Thisisnothardtoacceptbutitdoesdrawourattentiohatarationalnumberisiyaofequivalentfras,eachrepresentedbyapairofihissoundsintimidatiprefernottothinktoomuchaboutthis,fortheprospeanipulatingiionsofpairshtleaveusfeelihereisonesavianyfrahasauniquereducedrepresentatioheoraoraree,whibegotbyganyonfathefrawithwhichyinallybegaheless,oniliarwiththepropertiesoffradtherulesfthem,nothingsheventhoughihat,asyoudoyoursums,youareimpliipulatingiionsofintegerpairs。
Itistemptingthallthisfrettingaboutparticularequationsandsimplydeclarethatwealreadyknowwhattherealheyaretheofallpossibledecimalexpansions,bothpositiveaheseareveryfamiliar,inpractiowhowtousethem,andsowefeelonsafegrouilweasksomeverybasiaiureofhatyouadd,subtract,multiply,a,forexample,howareyousupposedtomultiplytwoinfinitendecimals?Wedependondecimalsbeihsothatyou‘startfrht-hathereisnosugwithaninfinitedecimalexpansion。Ite,butitisplicatedbothintheoryandinpraumbersystemwhereyletoexplainholydoesisfactory。
Youmayfiioionsraisedaboryoumaygrowimpatientwithalltheiioobemakingtroubleforourselveswhenpreviouslyallwassmoothsailing。Thereisaseriouspoihematisappreciatethat,whehematicalobjetroduced,itimportanttostructthemfromkicalobjects,theway,foriioofaspairsers。Inthisway,wemaycarefullybuilduptherulesthatgovereemandkafoundatiowillebatuslater。Forexample,therapiddevelopmentofcalculus,whichwasbornoutofthestudyofmotioospectacularresults,suchasprediovemes。Houlationofihingsasiftheywerefiimesprovidedamazinginsightsaimespatentingyourmathematicalsystemsonafirmfoundation,wehowtotellthedifferenpractice,mathematisoftenindulgein‘formal’manipulatiooseeifsheoffieisworthyofattebeprorouslybygoingbacktobasidbyihathavebeeablishedearlier。
ThisiswhyJuliusDedekind(1831–1916)tookthetroubleofformallystrugtherealembasedoisoasDedekindcutsofthereallihemati,however,tosuccessfullydealwiththedilemmacausedbytheexisteionalnumberswasEudoxusofidus(fl380BC)whoseTheoryofProportionsallowedArchimedestousetheso-calledMethodofExhaustiorouslyderiveresultsonareasandvolumesofcurvedshapesbeforetheadventofcale1,900yearslater。
Thefihenumberjigsaw–theimaginaryunit
13。Additionofbersbyaddiedlis
&iberspresentsitselfveryheplexplahinkofthebera+biasbeihepoint(a,b)intheateplawobersz=(a,b)andw=(c,d),wesimplyaddtheirfirstariestiveusz+w=(a+c,b+d)。Ifwemakeuseofthesymboli,wehaveforexample(2+i)+(1+3i)=3+4i。
Thisdstowhatiskoradditionintheplaedliors)areaddedtogether,toptotail(seeFigure13)。Webeginatthein,whichhasatesof(0,0),andinthisexamplewelaydownourfirstarrowfromtheretothepoint(2,1)。Toaddtheedby(1,3),wegotothepoint(2,1),anddrawanarroresentsmoving1unitrightialdire(thatisthedireoftherealaxis),and3unitsupiioical(theimaginaryaxis)。Weendupatthepointwithates(3,4)。Inmuchthesameway,weesubtraplexnumbersbysubtragtherealandimaginarypartssothat,forexample,(11+7i)-(2+5i)=9+2i。Thisbepicturedasstartingwiththevector(11,7),andsubtragthevector(2,5),tofinishatthepoint(9,2)。
Multipliisaer。Formallyitiseasytodo:wemultiplytwoberstogetherbymultiplyis,rememberingthati2=-1。AssumiributiveLawuestohold,whichisthealgebraicrulethatallowsustoexpasintheusualway,thenmultipliproceedsasfollows:
(a+bi)(c+di)=a(c+di)+bi(c+di)=
ac+adi+bci+bdi2=(ac-bd)+(ad+bc)i
Byusiherthanspeberswethesameway,fieofageneraldivisionofbersiheirrealandimaginarypartsaswehavedoneabeneralultipli。Hastheteiqueisuhereisnoproduorizetheresultingformula。
14。Thepositionofaberinpolarates
Furtherces
Thereareahostofappliplexheelemeheiweeangularandpolarrepresentatiooplayinasurprisingandadvantageousway。Foriandardexerciseforstudeionofimportahaturallybytakingarbitrarybersofunitmodulus(i。e。r=1),andgpbularandthenpolarates。Equatiwoformsoftheaherigoion。
&hesameinpives:
&ively,thepolarformforultiplibederivedusirigoriulas。Ihatwehavestatedhere,withoutproof,formultiplipolarformisusuallyfirstderivedfrularformbyusingtrigoriulas。
bersandmatrices
&usexaminesomecesoftherevelationthatmultiplibyirepresentsarotatiharightahetreoftheateplane。Ifz=x+iy,wehavethroughexpasaiplisthati(x+iy)=-y+ix,sothatthepoint(x,y)istakento(-y,x)uhisrotation;seeFigure15。Inthislibyiberegardedasonpoihisoperatiohespecialpropertythatforanytwopointszandwandanyrealnumbera,wehavei(z+)=a(iw)。Moreover,ifwemultiplyarealnumberabyaberx+iy,wegeta(x+iy)=ax+i(ay)。Intermsofpointsintheplexplahat(x,y)ismovedto(ax,ay),ortowriteitanotherway,a(x,y)=(ax,ay)。