Chapter2Theunendingsequenes
Howprimesfitintothenumberjigsaw
Howwebesurethattheprimesdonotbeerarerandrarerauallypeteroutalthtthinkthatsihereareinfinitelymanyumbersandeabebrokendorodues(somethingexplainedmorecarefullyiheremusttheelymahejob。Althoughthisistrue,itdoesnotfollowfromthepreviousobservations,forifwebeginwithafiiohereishenumberofdifferentnumbersroducejustusingthosegiveors。Ihereareinfinitelymapowersofanysingleprime:forexample,thepowersoftheprime2are2,4,8,16,32,64,···。Itisceivablethereforethatthereareonlyfinitelymanyprimesandeverynumberisaproductofpowersofthoseprimes。Whatismore,wehavenoroduendingseriesofdifferehewayweple,produumberofsquares,ormultiplesofaspecifiumber。Wheoprimes,westillhavetogoouthuntingforthem,sohowwebesuretheydo?
Wewillallbesurebytheendofthischapter,butfirstIwilldrawyourattentiontooern’amongtheprimesw。Everyprimefrom2and3,liesoheotherofamultipleof6。Inotherrimeafterthesefirsttwohastheform6n±1forsomenumber6nisshortfor6×nandthedoublesymbol±meansplusorminus。)Thereasonforthisisreadilyexplained。Everynumberbewrittelyohesixforms6n,6n±1,6n±2,or6n+3asnonumberismorethanthreeplacesawayfromsomemultipleofsix。Forexample,17=(6×3)-1,28=(6×5)-2,57=(6×9)+3;ihesixgivenformsappearineaningthatifyouwritedownanysixseumbers,eachoftheformsearexace,afterwhichtheyearagainandagain,inthesameorder。Itisevidentthatheforms6nand6n±2areeven,whileaheform6n+3isdivisibleby3。Therefore,withtheobviousexsof2and3,oheform6hecasewherebothofthenumbers6n±1areprimedsexactlytothetwinprimes:forexample(6×18)±1givesthepair107,109mehefirstchapter。Youmightbetemptedtojecturethatatleastowonumbers6n±1isalrime–thisislytrueforthelistofprimesupto100butthefirstfailureisnotfaraway:(6×20)-1=119=7×19,while(6×20)+1=121=112,sohernumberisprimewheaken=20。
Andtheprincipalreasonwhyprimesareimportantisthateverynumberberoduehateiiallyoofindthisspecialfactorizatioivennumberinsomewayaianypositefactorsthatappearuntilthisore。Forexample,wecouldsaythat120=2×60anduebybreakiefactorof6ive:
120=2×60=2×(2×30)=2×2×(2×15)=2×2×2×3×5。
&theprimefactorizationof120is23×3×5。Wecould,however,havecametothisbyae。Forirearrangingtheprimefaleasttogreateststillyieldsthesameresultasbefore:120=23×3×5。
120=12×10=(3×4)×(2×5)=(3×(2×2))×(2×5)
&didinthatexample,andthisbehaviourmaybemoreorlessfamiliartoyou,buthowyoubesurethatthisappliestoeveryisoughthatanynumberbebrokendoroduesbut,sihereisingehaagthistask,howwebesurethattheprocesswillalwaysdeliverthesamefihisisanimportaion,soIwilltakeafewmomentstogiveahereasoningthatallowsustobeabsolutelysureaboutthis。Itisaotherspecialpropertyofprimeweshallcalltheeuproperty:ifaprimenumberisafactorofaproduorehenitisafaeofthehatproduple,7isafactorof8×35=280(astheproduct280=7×40)a7isafactorof35。Thispropertycharacterizesprimesasnobergiveyouthesameguarantee:forexample,weseethat6isafactorof8×15=120(as120=6×20)yet6isnotafactorofeither8or15。
&hatprimesalwayshavetheabovepropertybeprovedusingabasedonwhatisknownastheEuAlgorithm,whichwillbeexplainedinChapter4。Ifwetakethisontrustforthetimebeing,itisnottoodifficulttoexplainwhynonumbercouldhavetwodiffereorizations,forsupposethereweresuumber。Therethenwouldbeasmallestobehavedinthisway:letusdebynandsonhastwoprimefactorizationswhitheprimefactorsarewritteninasgorder,areical。Weshallshowthatthisleadstotradidsomustbefalse。
Ifthesetwofactorizationsofnhadaprimepinon,webothandobtaintwodiffereorizationsofthesmallernumberhesmallestwodistiorizations,thisisnotpossibleasofprimesinvolvediorizationofnmusthavenoprimeinon。Norimepthatooorizationsofhisprimepisafa,itfolloisafactorofthesedfactorization,andso,bytheeuproperty,pisafaeoftheprimes,qsay,ofthesedfactorization。Butsindparebothprime,thisisonlypossibleifq=p,apossibilitythatwehavealreadydistedasthetwofactorizationsofnhavenoe。Andsowearriveatafinaltradi,showingthatitisimpossibleforsuumberhereforewecludethattheprimefactorizationofeverynumberisunique。
Itiswthattheuniquenessofprimefactorizationwouldnotholdifweihenumber1amongtheprimes,asweaoafactorizatioretainsthesamevalue。Thisshowsthat1isfuallydifferentiheprimes,andshttoframethedefinitionofprimenumberinawaythatexcludes1fromthe。
Eufinityofprimes
&urionastohothattheprimesgoohatthereisnoastthem。Ifsomeo101isthelargestprime,yourefutehimatoncebyshowingthat103hasnofactors(exceptfor1and103)andso1erprime。Yhtthehemadeaslipandthatheshouldhavesaidthatitwas103thatisthelargestprimeofall。Youshowhimupagaiingthat107isalsoprime,butyhtstillpersistinhiserrorbyadjustinghispositioprimenumberonview。Heretreatalittlefurtherandadmitthathedoesnotkyestprimebutioclaimthatheisthatthereisone。
&waytosettlethisquestiooshowthat,givenanyceivablefiionofprimes,roduewprime。Forexample,ifsomeoherewasalargestoddheresomewhere,youcouldrefutehimbysayingthatifnisodd,thenn+2isalargeroddhereotbealargestoddhisapproach,however,isheprimes–giveofprimes,wehavenowayofusiiontomanufactureaprimethatisdemerthanallofthem。Perhapsthereisabiggestprimeafterall?Hothatourstubborright?
EuclidofAlexandria(c。300BC),theGreekmathematidfatherofallthingseu,didhivenalistp1,p2,···,pkwhereeachofthepidenotesadifferentprime,heotfindawayanewprime,soherevertedtumentthatisoepmoresubtle。Heshowedthattheremustbeoneormorehiainrangeofhisargumeallowustolocateexactlywheretofihatrange)。
Itgoeslikethis。Letp1,p2,···,pkbethelistofthefirstkprimessay,aheisoheproductofalltheseprimes,sothatn=p1p2···pk+1。Eithernisaprime,orisdivisiblebyaprimesmallerthanitself,whiotbeanyofp1,p2,···,pk,asifpisaheseprimes,thendividingnbypwillleavearemainderof1。Itfollorimedivisorofhatisgreaterthatalltheprimesp1,p2,···,pkaself。Inparticular,itfollowsfromthisthatthereofiofprimesthatseveryprimenumber,andsothesequenesuesonforeverandwilled。Euclid’seternalproofoftheinfinityofprimesisamoadmiredinallofmathematics。
AlthoughEuclid’sargumeellexactlywheretofiprimeheoverallfrequencyoftheprimesisnowquitewelluood。Forexample,ifwetakeanytwonumbers,aandbsay,withnoonfadsiderthesequencea,a+b,a+2b,a+3b,···,itwasshownbytheGermai(1805–59)thatinfinitelymanymembersofsuchasequenceareprime。(Ofcourse,thereisnohopeifaandbdohaveaonfactor,dsay,asthehelistisalsoamultipleofd,andsoisnotprime。)Whena=1ahesequenbers,byEuclid’sproof,sinfinitelymanyprimenumbers。IbeshhfairlysimpleadaptationsofEuclid’sargumentthatotherspecialcasessuchasthesequenbersoftheforms3+4n,5+6n,and5+8n(asnrunsthroughthesuccessivevalues1,2,3,···),eafinitelymahegeofDirichletis,however,verydifficulttoprove。
Anothersimplystatedresultisthatthereisalwaysatleastoneprimehananygivelessthan2n(forn≥2)。(Asanaidtomemory,iysignssuchasthisone,whidsfreaterthao,alointtothesmallerquantity。)Thisfact,historiowrand’sPostulate,beprovedusiarymathematics,althoughtheproofisitselfquitetricky。Weverifythepostulatefornupto4000bymakihefollowinglistofprimes。Firstobservethateaumberiertheinitialprime2issmallerthaspredecessor:
2,3,5,7,13,23,43,83,163,317,631,1259,2503,4001。
Foreatherao4000,takethelargestprimepihatisheheherangen<q<2nandthistheBertrand’sPostulateholdsforallnupto4000。Forexample,forn=100,p=83,andthenq=163<2×100。Asubtleargumentinvolvingthesizeoftheso-tralbis(introduChapter5)thenshoostulateisalserthan4000。
However,wedooofarbefsimilar-soundiasyetremainunsolved。Forexample,nooneknowsifthereisalrimebetweenanytwosecutivesquares。Anotherobservationisthatthereseemstobeenoughprimestoeeveryeveerthawoofthem(Goldbajecture)。Thishasbeelyverifiedfornupto1018。Wemightthenhopefthelirand’sPostulate,thatbeyoaiegerroduparisoisknownaboutthedistributiooeherewillalwaysbeatleastoiootheequationp+q=2nforanyevehisstilleludesus,althoughthereareweakerresultsalongtheselines–forexample,ithasbeenkhateverysuffitlylargeoddhesumofatmostthreeprimehateveryevehesumofhan300,000primes。ProofofthefullGoldbajecturestillseemsalong>
Asimpleresultthathassomethingoftheflavourumeoaboveisthatthereisahan4billionthatbewrittenasthesumoffourdiffereendistinctways。Itisknownthat1729=13+123=93+103isthesmallestisthesumoftwotwodifferentedonotnecessarilyhavetoidentifythenumberoknowthatitmustexist。Sometimesitispossibletokhattherearesolutionstoaproblem,withoutadinganyofthosesolutioly。
Inthiscase,webeginbynotingthatifwetakefourdifferentnumbershaegermandformthesumoftheircubes,theresultislessthan4m3。However,ifm=1000,thearycalshowsthatthenumberofsumsoffourdifferentcubesismorethahenumber4m3,fromwhichitfollowsthatsomenumbern≤4m3=4,000,000,000mustbethesumoffouratleastteways。Thedetailsiionsusingbis(introduChapter5)aespeciallydifficult。
TheglobalpiedistributioheobservationoftheleadiuryGermaidphysicistKarlFriedrichGauss(1777–1855)thatp(n),thenumberofprimesuptothenumbern,isapproximatelygivenbynlognandthattheapproximationbeoreaccurateasnincreases。Forexample,ifwetakentobeonemillioioofnlog,uptothatstage,aboutonenumberinevery12。7shauss’sobservation,whidetailsayssomethingmoreprecise,roveduntil1896。Thelogarithmfuohereistheso-aturallogarithm,whiotbasedonpowersof10,butratheronpoeumbere,roximatelyequalto2。718。Weshallhearmoreofthisveryfamouser6。
&celebrateduioheoryistheRiemannHypothesis,whilybeexplaiermsofbers,whichwehaveyettointroduentioheobjectofthequestionbereformulatedusingtheuniquenessofprimefactorizationtoiaifeaturingalltheprimes。ThisleadstoaionwhichsaysthattheHypothesisimpliesthattheoveralldistributionoftheprimesisveryregularinthat,inthelongrun,primalityarentlyoly。Ofcourse,whetherornotapartiumberisaprimeisnotarawhatismeantisthatprimality,iheverylarge,takesoleofrahnoadditioruerge。Maheoristhasaheartfeltwishtoseethis150-year-oldjecturesettledintheirowime。
&heyrepresentsonaturalasequeisalmostirresistibletosearchftheprimes。Thereare,henuinelyusefulformulasforprimeistosay,thereisnokallowsyoutogeeallprimenumbersoreventocalculateasequesistsentirelyofdiffereherearesomeformulasbuttheyareoflittlepraeofthemevenrequirekheprimesequeocalculatetheirvaluesothattheyareessentiallyacheat。Expressionssu+41areknoolynomials,andthisoneisaparticularlyrichsoures。Forexample,puttingn=1,7,and20iheprimes43,107,aively。Iofthisexpressionisprimeforallvaluesofnfromn=0ton=39。Atthesametime,however,itisclearthatthispolynomialwillletusdoeputn=41,astheresultwillhave41asafadifailsforn=40as
402+40+41=40(40+1)+41=40×41+41=(40+1)41=412。
&isquitestraightforwardtoshoolynomialofthiskindyieldaformulaforprimes,evenifershigherthaheexpression。Itispossibletodevisetestsforprimalityofabestatedinafeever,tobeofusetheywouldobequicker,atleastihaverifiproceduredesChapter1。AfamoesbythenameofWilsoatemeheuseofnumberscalledfactorials,illmeetagainihenumberorial’,isjusttheprodubersupton。Forexample,5!=5×4×3×2=120。Wilsohenaverysuctstatement:anumberpisprimeifandonlyifpisafactorof1+(p-1)!。
Theproofofthisresultisnotverydiffidindeediisnearlyobvious:ifpwereposite,sothatp=absay,thehaahanp,theyeachoccurasfactorsof(p-1)!andsopisadivisorofthisfactorialaswell。Itfolloedivide1+(p-1)!byp,wewillobtainaremaihecasewherea=brequiresalittlemht。)ThisisveryremiofEuclid’sprooffortheinfinityofprimes。Itfolloisafactorof1+(p-1)!thenpmustbeprime。Theverseisalittlehardertoprove:ifpisprimethenpisafactorof1+(p-1)!。This,however,isthesurprisiioheorem,althoughthereadereasilyverifyparticularple,theprime5isiorof
1+4!=1+24=25。
Asafiion,loitfactorials,whichbydesignhavemanyfaordertoprovethatibers,thatistosayoheforma,a+b,a+2b,a+3b,···sistonlyofprimesasitispossibletoshobetweensuccessiveprimesbearbitrarilylargewhiletheoweeivemembersoftheprevioussequeoseethis,siderthesequensetegers:
(n+1)!+2,(n+1)!+3,(n+1)!+4,···,(n+1)!+n+1。
&hesenumbersisposite,asthefirstisdivisibleby2(aseachofthetermshas2asafactor),thesedisdivisibleby3,theby4,andsoonupuntilthefihelist,whi+1asafactor。Wethereforehave,fivenn,asequenseumbers,noneofrime。
Insteadoffoberswiththefewestpossiblefactors(theprimes),weshallierturhmanyfactors,althoughweshalldiscoverthatheretootherearesurprisinglinkstosomeveryspecialprimenumbers。