千米小说网

千米小说网>牛津数学英语 > Chapter 3 Perfect and not so perfect numbers(第1页)

Chapter 3 Perfect and not so perfect numbers(第1页)

Chapter3Perfeotsoperfeumbers

&ioninanumber

Itisofteofindpeculiarpropertiesofsmallcharacterizethem–foriheoisthesumofallthepreviousnumbers,while2istheonlyevenprime(makiprimeofall)。Thenumber6hasatrulyuyinthatitisboththesumandproductofallofitssmallerfactors:6=1+2+3=1×2×3。

&hagoreansumberlike6perfegthatthehesumofitsproperfactors,asweshallcallthem,whicharethedivisorsstrictlysmallerthantheself。Thiskiionisindeedveryrare。Thefirstfiveperfeumbersare6,28,496,8128,and33,550,336。Alotisknownabouttheeveothisday,noooahebasioftheAowhetherthereareinfinitelymanyofthesespeumbers。Whatismore,noonehasfoundanoddone,herearenone。Abeextremelylargeandthereisalonglistofspecialpropertiesthatsuumbermustpossessisoddperfe。However,alltheserestrishavelegislatedsuumberoutofexistehesespecialpropertiesservetodirectoursearchfortheelusivefirstoddperfeumber,whichmayyetbeawaitingdiscovery。

Theeveswerekohaveatightecialsequenes,knowntousastheMersenneprimeserMarinMersenne(1588–1648),a17th-turyFrenk。

AMersennenumbermisoheform2p-1,wherepisitselfaprime。Ifyoutake,byle,thefirstfourprimes,2,3,5,afourMersennenumbersareseentobe:3,7,31,and127,whichthereaderquicklyverifyasprime。Ifpwerenotprime,supposep=absay,thenm=2p-1islyher,asitbeverifiedthatiahenumbermhas2a-1asafactor。However,ifpisprimethentheerseenaprime,orsoitseems。

AndEuclidexplained,ba300BceyouhaveaprimeMersehereisaperfeumberthatgoeswithit,thatnumberbeingP=2p-1(2p-1)。ThereaderverifythatthefirstfourMersenneprimesdoifourperfeumberslistedabove:forexample,usihirdprime5asourseedwegettheperfeumberP=24(25-1)=16×31=496,thethirdperfeumberinthepreviouslist。(ThefactorsofParethepowersof2upto2p-1,togetherwiththesamelistofipliedbytheprime2p-1。Itisnowanexersummingwhatarekricseries(explainediocheckthattheproperfactorsofPdoioP。)

Whatismore,ihturythegreatSwissmathematihardEuler(1707–83)(pronounced‘Oiler’)provedthereverseimplithateveryevehistype。Inthisway,EudEulertogetherestablishedaotheMerseheevenumbers。However,theuralquestioheMersennenumbersprime?Sadlynot,andfailureiscloseathahMersennenumberequals211-1=2,047=23×89。IevenknowifthesequenersenneprimesrunsoutorerapointalltheMerseurnouttobeposite。

TheMersennenumbersarenaturalprimedidatesallthesame,asitbeshoerdivisor,ifos,ofaMerseheveryspe2kp+1。Forexample,whenp=11,bydentofthisresult,weneedonlycheckfordivisioheform22k+1。Thetwoprimefactors,23and89,dtothevaluesk=1ahisfactaboutdivisorsofMersennenumbersalsoprovidesabonusinthatitaffordsusasedwayofseeingthattheremustbeinfinitelymashowsthatthesmallestprimedivisorof2p-1exdsopotbethelargestprime。Sihisappliestoeveryprimep,wecludethatthereisprimeandtheprimesequenforever。

Sincewehavenorodugprimesatwill,thereis,ataime,alargestknownprimeandnowadaystheisalwaysaMersehaionalGIMPSveerMersennePrimeSearch)。Thisisacollaborativeprojectofvolunteers,whiin1996。TheprojectusesthousandsofpersonalputerswiestMersennenumbersforprimalityusingaspeciallydevisedcocktailorithms。Thepion,announAugust2008,is2p-1wherep=43,112,609,althoughanewMersenneprimewasfoundinApril2009withp=42,643,801。Thesenumbershaveabout13milliondigitsandwouldtakethousandsofpagestowritedowninordiation。

&hanumbers

Traditionalnumberloreoftenfoindividualhoughttohavespeotmagical,propertiessuchasthosethatareperfect。Hoairwithasimilartraitis220aamicablepair,meaningthattheproperfactorsofeachsumstotheother–akiiooacouple。TherekeurFreiPierredeFermat(1601–65)foundotheramicablepairs,suchas17,296and18,416,whileEulerdisly,theybothmissedthesmallpairof1184and1210,foundby16-year-oldNiiniin1866。Weofcobeyondpairsandlookforperfecttriples,quadruples,andsoon。Longercyclesarerarebutdocropup。

Wewithahesumofitsproperdivisors,aheprwhatisknownasthenumber’saliquotsequeisoftenalittledisappointinginthattypicallywegetathatheadsto1quiterapidly,atwhittheprocessstalls。Forexample,evenbeginningromising-lookingnumbersuchas12,theisshort:

&roubleis,oaprime,youarefiheperfeumbersareofcourseexs,eagusalittleloop,airleadstoatwo-cycle:220→284→220→···。leadtogerthantwoarecalledsociable。Theywerealluuryasnoonehadeverfouoday,leadstoathree-cyclehasbeehoughtherearenow120knowncyclesoflengthfour。ThefirstexampleswerefoundbyP。Pouletin1918。Thefirstisafive-cycle:

&’ssepleisquitestunning,andtothisdaynoothercyclehasbeenfoundthatatgit:startingwith14,316weobtaih28。Allotherknowncycleshavelehan10。Tothepresentday,therearenotheoremsonamidsoumbersasbeautifulasthoseofEudEuleronumbers。However,modernputingpowerhasledtosomethialrehiskindoftopidthereismorethatbesaid。

Wedivideallhreetypes,defit,perfedabundantagtowhetherthesumoftheirproperdivisorsislessthao,orexceedstheself。Forexample,aswehavealreadyseen,12isanabundantnumber,asare18and24astherespectivesumsoftheirproperdivisorsare21and36。

Anaivesearchforabuheileadyoutoguessthattheabundantnumbersaresimplythemultiplesof6。ly,aerthan6oftheform6nisabundaorsof6nmustiogetherwithn,2n,and3n,whiorethantheihisobservatioeoshowthatabujustaboutsixesaswearguethesameerfeumberk。Thefakwilliherwithallthefactorsoftheperfeumberk,eachmultipliedbynsothatthesumofalltheproperfaktoatleast1+nk,andthereforeanymultipleofaperfeumberwillbeabundant。Forexample,28isperfece2×28=56,3×28=84etc。areallabundant。

Amultiplesofperfeumbersahesametoken,multiplesofabundahemselvesabundant。Havihisdisightguessthatallabundantnumbersaresimplymultiplesofperfeumbers。However,youdoolooktoomuchfurthertofiextothisjecture,for70isabundantbutsfactorsareperfedeed,70isthefirstso-calledweirdexactlyforthisreason(thesourceofthislabelisexplainedbelow)。

&hesediscoveries,youmightstillthi,justasthereseemtobeherearenooddabundaher。Inotherwords,ourmodifiedjecturemightbethatalloddnumbersaredefit。Calofthealiquotsumsofthefirstfewhundredoddnumberswouldseemtothistheory,buttheclaimiseventuallydebuesting945,whichhas975asthesumofitsproperdivisors。esopenasanymultipleofanabundantnumberisabundant,andinparticulartheoddmultiplesof945immediatelysupplyuswithinfinitelymanymoreoddabundantnumbers。

&alittlemoreshreediscoverthister-examplemorequiifweunthioneodderanother。Foraohavealargealiquotsum,itsoffadlargefactorsatthat,whichthemselvesbeihsmallfactors。Wethereforebuildhlargealiquotsumsbymultiplyingsmallprimestogether。Ifwearefobersonly,weshouldlookatthosethatareproductsofthefirstfewoddprimes,whichare3,5,7,etc。Thisruleofthumbwouldsoootest33×5×7=945andtherebydiscovertheabuyamongtheoddnumbersalso。

Itisnotthatunusualtofindthatthesmallestexampleofahpropertiesturnsouttoberatherlarge。Thisisespeciallytrueifthespecifiedpropertiesimplicitlybuildafactorstrutotherequiredhesmallestexampleturnouttobegigantic,althoughnotnecessarilyhardtofihegiveiesihesolution。Anexampleofanumberriddleofthiskindistofiisfivetimesadthreetimesafifthpower。Theansweris

7,119,140,125=5×11253=3×755。

Thereasosolutionisinthebilliohardtosee。Anysolutionnhastohavetheform3r5smforsomepositivepowersrandsaheremaiorsarecollectedtogetherintoasiisnotdivisibleby3or5。Ifwefirstfothepossiblevaluesofr,weobservethatsiimesacube,theexpobeamultipleof3,aimesa5thpower,thenumberr-1hastobeamultipleof5。Thesmallestrthatsatisfiesboththeseultaneouslyisr=6。Iheexposhastobeamultipleof5,whiles-1hastobeamutipleof3ahatfitsthebilliss=10。Tomakenassmallaspossible,wetakem=1andson=36×510=3(3×52)5=3×755,sothatimesa5thpoweraimen=5(32×53)3=5×11253,andsonisalso5timesacube。

Aneveremeexampleisthecelebrated,attributedtoArchimedes(287–212BC),thegreatestmathematitiquity。Itwashe19thtury。Thesmallestherdofcattlethatsatisfiesalltheimposedtsintheinal44-linepoemisrepresentedbyahover200,000digits!

Awarningtobegleanedfromallthisisthatdisplaytheirfullvarietyuotherealmse。Forthatreasohattherearehfewerthan300digitsdoesnotinitselfgivegrthatthey‘probably’do。Allthesame,itisthecasethatsomeleadihefieldwouldbeastonishedifournedup。

&urothegeneralbehaviourofaliquotsequeillsimplequestionsthatmaybeputthatnoonesossibilitiesareopentoaliquotsequehesequesaprime,itwillimmediatelytermi1,andotdothisinanyotherway。Ifthisdoeshesequencecouldbedsorepresentasoumber。Thereis,however,aedpossibilitythatisrevealedbygthealiquotsequenceof95:

95=5×19→(1+5+19)=25=5×5→(1+5)=6→6→6→···。

ealthough95isnotitselfasoumber,itsaliquotsequeuallyhitsasoumber(ormoreprethiscase,theperfeumber6)andtheoacycle。

Thereisceivablyonepossibilityremaining,thatbeingthatthealiquotsequenbersaprimenorasoumber,inwhichcasethesequebeanunendingseriesofdifferentnumbers,noneofwhichareeitherprimeorsociable。Isthispossible?Surprisingly,nooneknows。Whatismisthattherearesmallnumberswhosealiquotsequenunknown(andtherebyremaindidatesfsufisequeofthesemysteriousnumbersis276,whosesequens:

butnoolywhereitendsup。

Itmightwellbethatthereaderwouldliketoexplorealittleontheirown,inwhichcaseIshouldletyouiofhowtocalculatetheso-calledaliquotfun)fromtheprimefactorizationofofallterms(pk+1-1)(p-1),wherepkisthehighestprimepoweroftheprimepthatdividesraitself。Forexample,276=22×3×23andsoasiheseisequencefor276listedabove。

Thereishetypesofwetroducebygivihebeararelationshiptothealiquotfun。Aswehavealreadymentioned,ifa(n)=nandabundantifa(numberisthesumofsomeofitsproperdivisors(thoselessthann),soitfollowsfromthedefinitionthatallsemiperfeumbersareeitherperfedant。Forexample,18issemiperfectas18=3+6+9。Anumberiscalledweirdifitisabundantbut,aweirdnumberis70。

&akethevieiingtoomiseousiowiherarbitrarilydefinedbersdoesnotofitsownaakethemiing。Weshouldkop。Thatsaid,itisregthattheurategiesusedtotackletheseioremiofwhatEudEulershowedusioperfeumbers。YouwillrecallthatwhatEuclidprovedwasthatifaMersennenumberrimethenanothernumbererfect。Eulerthenprovedverselythatallevenumbersarisefromthisapproathe9thtury,thePersiaiThabitibnQurraintrodubernatripleofnumberswhich,ifallprime,allowedthestruicablepair。Thabit’sstruwasgeherbyEulerihtury,buteventhisenhanulatiooyieldafeairsandtherearemanyamicablepairsthatdohisstru。(Therearenownearly12millionknownpairsofamiumbers。)Iimes,asimilarapprivesastruofweirdnumbersfromumbersshouldtheyhappentobeprime,andthisformulahassuccessfullyfeweirdhmorethanfiftydigits。

&tershaveservedtofamiliarizethereaderwithfadfactorizatiouralnumbers,orpositiveiheyarealsoknown,illustratedthroughavarietyofexamples。Thiswillstandyouiheupingchapter,inwhichyouwilllearnhowthoseideasareappliedtopraphy,thesceofsecrets。

已完结热门小说推荐

最新标签